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Abstract

Social scientists have become increasingly interested in using intensive longitudinal

methods to study social phenomena that change over time. Many of these phenomena are

expected to exhibit cycling fluctuations (e.g., sleep, mood, sexual desire). However,

researchers typically employ analytical methods which are unable to model such patterns.

We present spectral and cross-spectral analysis as means to address this limitation.

Spectral analysis provides a means to interrogate time series from a different, frequency

domain perspective, and to understand how the time series may be decomposed into their

constituent periodic components. Cross-spectral extends this to dyadic data and allows for

synchrony and time offsets to be identified. The techniques are commonly used in the

physical and engineering sciences, and we discuss how to apply these popular analytical

techniques to the social sciences while also demonstrating how to undertake estimations of

significance and effect size. In this tutorial we begin by introducing spectral and

cross-spectral analysis, before demonstrating its application to simulated univariate and

bivariate individual- and group-level data. We employ cross-power spectral density

techniques to understand synchrony between the individual time series in a dyadic time

series, and circular statistics and polar plots to understand phase offsets between

constituent periodic components. Finally, we present a means to undertake

non-parameteric boostrapping in order to estimate the significance, and derive a proxy for

effect size. A Jupyter Notebook (Python 3.6) is provided as supplementary material to aid

researchers who intend to apply these techniques.

Keywords: spectral analysis, cross-spectral analysis, dyadic, time series analysis
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Spectral and Cross-Spectral Analysis - a Tutorial for Psychologists and Social

Scientists

Introduction

Social scientists are often interested in dynamic systems and social phenomena that

change in highly complex ways over time (Bringmann et al., 2016; Nesselroade & Ram,

2004; Vallacher & Nowak, 1997; Wang et al., 2012). Despite this, social scientists have

traditionally relied on cross-sectional data that focus exclusively on variation between, not

within, individuals and which cannot capture the complexity and the dynamic nature of

the system (Molenaar, 2004). In recent years, there has been an increase in intensive

longitudinal studies in which a relatively large number of time points are collected to assess

the phenomenon of interest (Bolger et al., 2003; Mehl & Conner, 2012; Scollon et al., 2003).

These studies enable researchers to study within-person processes as they unfold over time,

in order to determine when, how, and why people change (Bolger & Laurenceau, 2013;

Bringmann et al., 2016; Ferrer & Nesselroade, 2003; Molenaar, 2004; Molenaar &

Campbell, 2009; Nesselroade & Molenaar, 2010; Nesselroade & Ram, 2004). However,

despite a surge in the collection of intensive longitudinal data, the majority of the studies

still employ overly reductionist analyses that fail to “let the data speak” (van der Laan &

Rose, 2011). At best, some models may constitute simple functional forms such as

quadratic, cubic, or exponential, and a linear trend to describe a growth pattern

(Bringmann et al., 2016), despite the fact that the characteristics of interest may exhibit

more complex relationships that may not be uncovered with these techniques (Vallacher &

Nowak, 1997). Furthermore, given psychologists are interested in understanding how

individuals change over time (Molenaar, 2004), being able to estimate within-person

variation in their time series instead of simply pooled averages is important.

Some authors have pushed for more comprehensive mathematical approaches to

model societal phenomena (Gottman et al., 2003). Several analytical methods that enable

the study of complex time-varying phenomena have been proposed. These include the use
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of autoregressive (Bringmann et al., 2016), dynamic structural equation (Asparouhov et al.,

2017), hierarchical Bayesian (Driver & Voelkle, 2018), and penalized spline models (Won

Suk et al., 2019). However, there are several limitations with these analytical methods,

such as requiring prior knowledge of when the time series is likely to change, not

accounting for multiple rates of change that may be ongoing at the same time, and not

addressing cyclical patterns in fluctuation over time.

Stroud and Booth (2003) define a periodic signal as one whose “function values

repeat at regular intervals of the independent variable” (p.183). Many phenomena cycle

and oscillate, and are misspecified by a straight line or a polynomial. This is illustrated in

Figure 1, where the Ordinary Least Squares fit indicates a significant downward trend,

despite the slope of this trend varying depending on the start and end points of the sample

period. In other words, if we were to extend the x-axis of the graph in Figure 1 and run the

OLS once again, the trend would change direction. Because of this, even when researchers

do not have access to enough data to uncover cyclicity in their time series, considering

potential theoretical fluctuation in the phenomenon of interest is important. In the case

where researchers have intensive longitudinal data, being able to examine potential

periodic components in the data is advantageous.

There are a number of analytical methods that can be used to identify periodically

fluctuating phenomena over time, notably, latent differential equations (Hu et al., 2014),

spectral analysis (Oppenheim & Schafer, 1999), and dynamic factor models which operate

within the structural equation modeling framework (Molenaar, 1985, 1987; Molenaar et al.,

1992). One of the models using latent differential equations includes the damped oscillator

model (Chow et al., 2005; Deboeck et al., 2008; Hu et al., 2014). The technique can be

used to model variables that tend to oscillate around some typical value, or equilibrium. In

the model, the interplay between frequency and damping determines how quickly the

phenomenon returns to equilibrium (Nesselroade & Boker, 1994). When there is no

damping in the model, in other words when a phenomenon fluctuates around a mean
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without returning to an equilibrium, the integral solution of the damped oscillator model is

equal to the sinusoidal model of the spectral analysis (Chow et al., 2005). Thus, in the

simple case, these two methods provide equivalent results and the use of spectral analysis

may be preferred. Spectral analysis has two key strengths above the damped oscillator

model. First, spectral analysis estimates all possible frequencies simultaneously whereas

the oscillator model only extracts the most dominant frequency. Second, when researchers

are interested in understanding synchrony, or shared fluctuation in the frequency domain,

across two time series, cross-spectral analysis can estimate the phase information easily. In

contrast, researchers would need to run separate damped oscillator models for each time

series and then compute the cross-phase (Chow et al., 2005).

The use of spectral analysis dates at least as far back as the Babylonian times

(around 4000 years ago) for making astronomical predictions (Oppenheim & Schafer,

1999). Spectral analysis is currently widely and frequently used by scientists of physics,

meteorology, marine science, and others (Abramovich et al., 2000; Chatfield, 2005).

However, while there are many phenomena that fluctuate periodically over time that may

be of interest to social scientists (e.g., mood, stress, sexual desire, calendar events, monthly

payments, sleeping, and eating), there has been relatively little use of spectral analysis in

the literature. Exceptions include identification of weekly periodicity in characteristics of

mood and personality (Campbell et al., 1991; Larsen, 1987; Larsen et al., 2009; Larsen &

Kasimatis, 1990) and fluctuation in sexual desire (Vowels et al., 2018). Dynamic factor

models (Molenaar, 1985, 1987) can also be conducted in the frequency domain which

require a spectral decomposition of the original time series into the frequency domain as

the first step in the analysis process. The damped oscillator model, which is one model

using latent differential equations, in its simple form also provides results equivalent to

spectral analysis. Additionally, spectral analysis is often used especially in economics to

de-seasonalize the data as a data preparation step prior to conducting the main analysis

(e.g., see Geweke, 1978; Sims, 1974). In other words, the regularly fluctuating components
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are removed from a time series in order to detect a clearer trend.

In addition to identifying periodic change over time in one variable, spectral

analysis can also be used to identify shared fluctuation or temporal coordination across two

or more variables (cross-spectral analysis). There are various societal phenomena that have

been suggested to exhibit such temporal coordination. These include the rhythm and

frequency of gaze between mothers and their newborn infants (Gottman, 1979; Gottman &

Ringland, 1981; Lester et al., 1985; R. M. Warner et al., 1987); coregulation between

romantic partners’ physiology and affect (Butner et al., 2007; Gottman et al., 2003;

Gottman et al., 2002; Helm et al., 2012; Liu et al., 2013; Papp et al., 2013; Saxbe &

Repetti, 2010; Steele & Ferrer, 2011); and interpersonal synchrony between strangers in

peer conversations, cooperative games, and group activities (Guastello et al., 2006;

Kleinspehn-Ammerlahn et al., 2011; Muller & Lindenberger, 2011; Wiltermuth & Heath,

2009). Only a small number of studies have employed cross-spectral analysis to study

synchrony (Gottman & Ringland, 1981; Lester et al., 1985; Liu & Molenaar, 2016; Sadler

et al., 2009). For example, in a study of 30 couples, Gottman and Ringland (1981) used

cross-spectral analysis and found coherence between partners’ affect ratings and their

physiological responses. Cross-spectral analysis has also been used to investigate the

decreased coherence in brainwave activity in patients with schizophrenia (Bert et al., 2010;

Yeragani et al., 2006).

While there are a handful of existing studies in the social sciences that have used

spectral and cross-spectral analyses, there is currently very little guidance on how to

undertake them (for exceptions, see Gottman, 1979; R. Warner, 1998). Therefore, the

purpose of this tutorial is to provide both a theoretical as well as a practical introduction

to spectral and cross-spectral analyses. Our hope is that readers can get an intuitive

understanding of the theory behind spectral analysis as well as how to conduct analyses in

the frequency domain. There are various ways to approach spectral analysis, but we have

chosen to use one of the most well-known approaches that derives from the work of Fourier.
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This approach is extremely well established in the physical sciences, and readers are

encouraged to explore the detailed expositions by many authors (Cooley et al., 1967;

Cooley & Tukey, 1965; Jenkins & Priestley, 1957; Jenkins & Watts, 1968; Oppenheim &

Schafer, 1999; Percival & Walden, 1998). What follows is an overview of the concepts

which we consider to be relevant to those working in the social sciences, as well as practical

instructions on how to conduct spectral analysis with estimations of significance and effect

size. Furthermore, we also describe the use of circular statistics and polar plots that can be

used to visualize and make inferences about the phase offset between different cycling

components in cross-spectral analysis. We have also provided a Python notebook that

readers can use to test and replicate different elements of the analyses.1

Spectral Analysis via Fourier Series

The Foundations

Trigonometry Review

Similarly to how Principal Components Analysis (PCA) might decompose data into

a linear sum of orthogonal components, spectral analysis is concerned with the

decomposition of data (in our case, we consider time series data) into a linear sum of

principal frequency components. These components are orthogonal sinusoidal basis

functions. While the basis function for a linear trend is the first power of some term e.g.

‘t’, the basis functions for spectral analysis are sinusoidal functions of time t:

f(t) = A sin(2πft) (1)

Where 2πf constitutes the angular frequency of the wave and is often denoted as ω;

f is the frequency of the wave (in cycles per unit time); and A is the peak (i.e. maximum)

amplitude of the wave. The interval between the start and end of each repetition or cycle is

1 Materials can be found at: https://github.com/matthewvowels1/SpectralAnalysisTutorial.

https://github.com/matthewvowels1/SpectralAnalysisTutorial
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called the ‘period’, T . Equation 1 assumes continuous time sampling (i.e. we theoretically

have data for every possible time point that could exist), but in practice we usually acquire

N data from discrete points in time n = [0, 1, ..., N − 1], where the square brackets

highlight that n takes on discrete values. In this article we may switch between continuous

and discrete time where convenient, but whenever we do, we will use t and n, and round

and square brackets, respectively. For instance, a discrete time-sampled version of

Equation 2 would be:

f [n] = A sin(ωn) (2)

Figure 2 illustrates a simulated wave from a hypothetical study where the data was

collected each day (i.e., a sampling period of 1) for 60 days (i.e., the total number of days

in the study). In order to simulate this wave of frequency f , with a unit amplitude e.g.

A = 1, the following process was followed. Begin by treating the sampling period as

ranging from 0 to (1− 1/N) in equally spaced, discrete steps, where the number of steps is

determined by N (e.g., N = 60). So long as the time index ranges between 0 and

(1− 1/N), the frequency f is simply the number of cycles in that period (e.g., f = 2).

Then, dividing the [0, (1− 1/N)] interval into N equally spaced steps, f [n] may then be

generated according to the relationship in Equation 2 with ω = 2× π × 2. The period of

the wave is simply the reciprocal of the frequency Nt = f−1 = 1/2 (i.e., one cycle lasts half

of our sampling time). If the sampling time is two months, and N = 60, then we can

re-scale the x-axis from [0, (1− 1/N)] to [0,59], assuming that we want daily samples for

two months, and we recover Figure 2 using f [n] = 1× sin(2× π × 2× n).

This wave can be ‘phase shifted’ to the left or to the right by respectively adding or

subtracting a phase quantity to the term inside the brackets. If this phase shift is given by

a quantity φ, then Equation 2 can be extended to: f [n] = A sin(2πfn± φ). Two sine (or

cosine) waves are indistinguishable if they have the same frequency and amplitude and have

a phase shift that is φ = 2dπ radians where d ∈ Z (i.e., d is an integer). The summation of
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two waves sharing the same frequency and amplitude but having a phase shift φ = π

radians is 0. In this case, the waves are said to be in inverse polarity and sum to zero.

In order to shift a single wave, such as the one in Figure 2, by a specific quantity,

the relationship between the shift and the period of the wave must be known. We cannot

simply apply a delay to a series comprising multiple waves of different frequencies, because

the delay would affect all waves by the same quantity regardless of their respective

frequencies. For example, for a shift of 15 days to a wave with a total period of 30 days,

the shift in radians is φ = 2π(15/30) (i.e., shift is a fraction of the total 2π radians). The

result in Figure 3 is given by f [n] = 1 sin(2× π × 2× n− 2π(15/30)). Note that the ‘dots

have been joined’ in this figure, to give the illusion of continuous time sampling.

Fourier and the Discrete and Fast Fourier Transforms

Spectral analysis is principally grounded in Fourier’s theorem, which posits that any

periodic function of time can be represented as a sum of sine and cosine functions of

varying amplitudes and frequencies. In other words, the Fourier series allows us to

represent the original time series as a sum of sinusoidal components and associated spectral

parameters (where the parameters are amplitude, frequency, and phase). These parameters

can be plotted on a spectrum. Indeed, the aim of spectral analysis is to ‘work backwards’

to identify the parameters of the spectral components that could have resulted in the

generation of the observed time series.

A mathematical description of an infinite Fourier series for a signal is presented by

Stroud and Booth (2003, p. 183) as:

f(t) = a0

2 +
∞∑

k=1
(ak cos(kt) + bk sin(kt)) (3)

In Equation 3, ak and bk represent the coefficients and are, by definition, the

amplitudes of the Fourier series basis functions which have frequency k.

A square wave is an example of a time series with dramatic changes and abrupt
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discontinuities. Figure 4 illustrates how a finite sum of continuous sine waves can be used

to approximate this wave. Unfortunately, we can never recreate a square wave perfectly

without an infinite sum of sine waves. This is because abrupt discontinuities present

undefined / infinite gradients, which only an infinite number of continuous functions can

represent. However, in the social sciences we are more likely to be concerned with

identifying the periodicity of the fluctuation, than we are to be concerned with perfect

time-domain simulation or reconstruction of the time series’ discontinuities. Given that

periodic fluctuation in discrete or binary variables (e.g. yes/no) may be well represented

using a square wave, it is important to understand that spectral analysis can identify

fluctuations in such discontinuous time series.

In the discrete time scenario, and finite sample setting, whereby the time series is

represented as a finite set of datapoints, the number of Fourier series coefficients is often

set to be equal to the number of time points. These coefficients are estimated using the

principles of the Discrete Fourier Transform (DFT), which undertakes a lossless, bijective,

mathematical transformation between the discrete time and discrete frequency domains.

The DFT, and its inverse, DFT−1 are defined as follows:

X[k] = DFT{x[n]} =
N−1∑
n=0

x[n]e−j 2π
N

kn (4)

and

x[n] = DFT−1{X[k]} = 1
K

K−1∑
k=0

X[k]ej 2π
N

kn (5)

such that
DFT−1{X[k]}

DFT−1{DFT{x[n]}}
= 1 (6)

for k = {0, 1, 2, ..(K − 1)}.

where x[n] is some function of discrete time (i.e., a time series sampled at regular

discrete intervals, such as would be the case for a daily diary study). K may (as mentioned

above) be equal to N , and describes the maximum number of Fourier coefficients, and X[k]
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represents the discrete frequency domain representation of the original discrete time

domain signal.2 Once again, we reiterate that this is a lossless, bijective transformation

such that one can move back-and-forth between the frequency and time domains without

loss of information. In order to compute the K coefficients, we rely on efficient algorithmic

implementations of the DFT, most commonly, the Fast Fourier Transform (FFT).

Implementing the Fast Fourier Transform

Overview and Research Questions

This section presents some examples of simple, univariate time series and their

corresponding Fast Fourier Transform (FFT) spectra. We also cover a number of

important practical considerations, such as the number of required time points, the highest

recoverable frequency, how we extract the phase information, and how to improve the

interpretability of the spectra using windowing.

Taking the FFT of a single univariate time series allows us to decompose it into its

constituent frequency components, and to understand the relative amplitudes and phase

shifts for each of these components. For example, a time series may derive from some

self-report measure of mood, where the ratings might be expected to contain periodicity

due to socioeconomic factors (such as pay-day), or biological factors (such as the

circaseptan rhythm, or day of the week). The FFT can either be used to investigate the

nature of any periodicity in mood, or it can be used to remove it (de-seasonalize).

An Example Transformation

Taking the two-month, univariate time series in Figure 2, which comprised a sine

wave with an amplitude of 1, and a frequency of two cycles in two months, a Fast Fourier

2 While the introduction of the exponential term may initially seem surprising, readers are encouraged to

recall Euler’s formula linking trigonometric functions with the exponential: ejφ = cosφ+ j sinφ, where

j =
√
−1. As such, the DFT works to establish a measure of cross-covariance between the time series and a

series of sinusoidal components represented in exponential form.
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Transform (FFT) spectrum of this time series is shown in Figure 5. Note that a peak is

identified at a frequency of one cycle per month, although the x-axis could be re-scaled to

be in terms of any desired unit of time.

There are a few notable aspects to this result. First, it is reassuring that we have

perfectly recovered the ground-truth results for both the amplitude and the frequency,

however, in practice, this will not be the case. Second, the frequency axis stops at 15 cycles

per month - this relates to what is known as the Nyquist limit. Third, there are only 31

frequency components, even though in the previous section, K was suggested to usually be

equal to the number of time samples N = 60. Fourth, there is no indication of the phase of

the components. We will now discuss these four items in turn.

Perfect Recovery

The FFT results in Figure 5 demonstrate a perfect/unambiguous recovery of the

sine wave component from the hypothetical 60 day study. This has occurred because -

contrary to what will usually be the case in practice - the original time series had a

duration which was an integer multiple (i.e. a whole number) of cycles or wave periods.

Effectively, the wave wraps around such that the last sample in the series, functionally

precedes the first sample in the series. The DFT thereby assumes the observed wave is a

finite sample of an infinitely long, repeating version of the same wave. A further implication

of this assumption is that the wave under observation is stationary, i.e. its parameters and

therefore its components do not vary over the course of the sampling period. There are

tools, such as spectrograms, that provide three dimensional representations for how

periodicity varies over time, but these are beyond the scope of this paper.

In reality, it is more common that the sampling period is not an integer multiple of

the wave period in length. An example is shown in Figure 6. Note how the wave is in a

different part of the cycle when data collection stops as compared to the beginning of the

study.
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Indeed, if this wave is wrapped around such that its last sample precedes the first,

an abrupt discontinuity is introduced, and the DFT has no choice but to model this

discontinuity as if it repeats periodically. The FFT is shown in Figure 7 suggesting that

frequencies on either side of the actual frequency (i.e., side lobes) may be present thereby

blurring the identifiability of the principal frequency, and affecting the estimation of the

amplitude.

In practice, the further effect of additive noise may also obscure clean results.

Figures 8 and 9 depict example time series and corresponding FFT for a signal with

Gaussian distributed additive noise. This noise is now present in the FFT result as

randomly distributed energy at all frequencies (i.e., white noise).

Figure 8 and the subsequent FFT in Figure 9 are starting to resemble data that

researchers may actually collect. We will discuss techniques, such as windowing, to address

these challenges later in the paper.

The Nyquist Limit

The second aspect to discuss relates to the highest reported frequency component,

which in the examples was a frequency of 15 cycles per month. This frequency corresponds

with what is known as the Nyquist limit, which is equal to half the sampling frequency. For

example, for 60 samples of daily diary data, the highest frequency that can be identified,

and thus the Nyquist limit, is one cycle per every two days (because the sampling occurs

once a day), which would imply 30 cycles in total across that 60 day time span. Since the

signal is a function of time, and is being represented by functions with regular and stable

periodicity, the data must also be sampled at regular intervals. Any component of

periodicity that exceeds these limitations will be aliased back into the signal and will cause

spurious results (Hamilton, 1994).

Unfortunately, researchers may often have little control over the possibility of

aliasing, because, with human participants, the choice of sampling frequency is limited
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practically. As such, there will be a certain probability that the data will contain aliased

artifacts. In such cases, deviations from regular sampling can actually alleviate the

regularity associated with bands of aliasing frequencies, so long as these deviations are not

severe enough to affect the estimation of the sub-Nyquist frequency components.3

Therefore, if a researcher wishes to investigate a phenomenon that they suspect to cycle at

a maximum frequency of once per week, then a sample rate of at least twice per week is

required. Note that the Nyquist limit is exactly that: A limit. In practice, the higher the

sampling rate, the better.

Half the Number of Components to Time Samples.

Given that the highest frequency component corresponds with half the sampling

frequency, and given also that the number of frequency components is usually set to be

equal to the number of time points, why are there only 31 frequency points in Figure 5,

when there were N = 60 time samples? The DFT (and hence the FFT) actually yield what

are known as even spectra, which means the spectrum of positive frequencies are mirrored

around the y-axis into negative frequencies. Negative frequencies are not semantically

meaningful, and so it is usual practice to discard the first (K/2)− 1 components, and

present only the positive frequencies (including 0). The mathematical operations may be

written as follows: |FFTpos[k′]| = 2× |FFT [k′]/N | for k′ = 0, ..., (N/2) + 1. The vertical

lines indicate a magnitude operation, the factor of two exists to compensate for discarding

half the spectrum, and the divisor of N exists to normalize the result according to the

number of samples in the sampling period. Note that the factor of two multiplication

should only be applied to components that are actually mirrored (i.e., not to the zeroth

component, and neither to the nyquist component; MathWorks, 2018). The raw output of

the FFT is actually K = N complex duals, usually given in Ĉk = ak + jbk form, where

j =
√
−1 and Ck is the kth frequency component. In order to take the magnitude, the L2

3 We owe this idea to Dr. Isaac Washburn (personal correspondence).
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norm is taken according to:

|Ck| =
√

(a2
k + b2

k) (7)

Where is the Phase Parameter?

The phase parameter is embedded in the raw output of the FFT, which was

discarded in order to plot semantically meaningful spectra. However, the phase of any of

the K frequency components (or, more usually, the (K/2) + 1 positive frequency

components) can be trivially calculated according to:

∠Ĉk = arctan bk

ak

(8)

This equation yields a value in radians. Note that phase wraps around 2π radians,

or 360 degrees, such that 0 = 2π = 4π... radians. For this reason, circular/polar statistics

may be useful when comparing phase values and computing descriptive statistics such as

means and standard deviations.

Phase information is crucial if a model of the original time series is to be

constructed from the spectral decomposition. For example, if one wishes to simulate a

canonical time series using the spectral decomposition, then the phase information is

critical in maintaining the temporal relationships between the time series’ constituent

frequency components. However, and as Gottman and Ringland (1981) note, phase

information is available for all frequencies, regardless of whether those frequencies are

significant and meaningful in themselves. Therefore, phase information can only be

meaningfully interpreted for frequencies which are significantly high in amplitude (i.e. not

simply due to noise and random fluctuation).
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Increasing the Complexity and Windowing

A wave of marginally increased complexity is given by

f [n] = sin(4πn) + sin(16πn) + 0.5 sin(32πn) + 0.4ε[n] where ε ∼ N (0, 1),

n = [0, 1/N, ..., 1− (1/N)] and N = 60. In words, this wave contains cycles at once per

month, four times per month, and twice a week, and also contains additive Gaussian noise.

This time series is shown in Figure 10. From a visual inspection it may be possible to

vaguely identify the presence of cycles, but the parameters of these components would be

almost impossible to identify without spectral analysis. The corresponding FFT spectrum

is shown in Figure 11, and the four highest peaks in this spectrum correspond exactly with

the four constituent waves in our time series. Note that, this is an idealized demonstration

because the length of the sampling period was chosen to be an integer multiple of all

constituent components.

As discussed in the section entitled Perfect Recovery, some ambiguity exists in the

FFT spectrum of time series which contain a non-integer number of constituent component

cycles. The ambiguity manifested itself as side lobes that form either side of main

frequency lobes in the spectrum (Wickramarachi, 2003). In order to mitigate these issues,

windowing functions may be used to smoothly attenuate the amplitude of the time series

towards the start and end of the sampling period, thereby removing discontinuities.

Without this attenuation, the time series is essentially being truncated or windowed by a

box-car function, or a rectangular window:

w[n] =


1 0 ≤ n ≤ N

0 otherwise
(9)

There are various options for windowing, and each of them have various advantages

and disadvantages relating to side lobe height and side lobe width trade-offs. A discussion

on these trade-offs is beyond the scope of this paper, but interested readers are pointed to

Wickramarachi (2003), Brandt (2011), and Oppenheim and Schafer (1999). The Hann
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window is considered in this work, and an example windowed sine wave, with the

corresponding Hann windowing function, is shown in Figure 12, and corresponding FFT

results are shown in Figure 13. It can be seen that the higher frequency component

parameter estimation is relatively unaffected by the rectangular truncation, and the

application of windowing has actually broadened the side lobes to its detriment. However,

at the lower frequency, the truncation is more noticeable, resulting in side lobes that

extend a long way either side of the main lobe. Here, the application of windowing reduces

these side lobes, and improves amplitude estimation. Note that, pursuant to windowing, an

amplitude correction factor must be applied to compensate for the reduction in energy

concomitant with windowing. This correction factor is calculated according to Equation 10

(Brandt, 2011). Researchers are encouraged to explore windowing as part of the data

analysis.

acf = N∑N
i w[n]

(10)

Cross-Spectral Analysis

Overview and Research Questions

While it is of some benefit to be able to decompose univariate time series into their

constituent frequency components, it is also interesting to be able to identify

commonalities, or shared rates of fluctuation, across a bivariate, or dyadic time series.

Cross-spectral analysis provides a means to quantify these shared rates of fluctuation, as a

form of correlation in the frequency domain. For example, for two individuals living

together, cross-spectral analysis provides a means to understand whether their self-report

ratings for mood fluctuate at any shared frequencies. Further, most software packages that

provide cross-spectral estimation also provide an estimation for the relative phase shift

between the shared components. This allows researchers to understand the lead/lag

relationship between individuals. It might be, for instance, that while the individuals have
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fluctuations in mood that both cycle once per week, each of the individuals’ mood ratings

peak at different times to one another.

Cross Power Spectral Density

Cross-spectral analysis provides a means to establish the

cross-covariance/correlation between the spectra. One common method is the Cross Power

Spectral Density (CPSD) method, which first requires computation of the power spectra

for each univarite time series, and then undertakes a form a cross-covariance in the

frequency domain. The power spectral densities, which are equivalent to periodograms

(MathWorks, 2018), are trivially derived from the FFT as follows:

Pxx = 1
fs

|X[k]|2 (11)

The power spectral density can therefore be considered to be the normalized

magnitude squared spectrum. Consider the bivariate time series depicted in Figure 14, and

the corresponding FFT spectra shown in Figure 15.

The CPSD between two signals x and y, which is designated in this work by Pxy, is

usually computed using Welch’s Overlapped Segmented and Averaged (WOSA) method

(Welch, 1967), rather than by simply taking the complex conjugate product of the two as

Pxy = X[k]Y ∗[k], where the asterisk denotes the complex conjugate. For WOSA method,

the time signals must first be divided into ‘Q’ segments, each of length ‘S’, with overlap

between segments of ‘R’. Second, the segments are windowed (e.g., using the Hann

window), and a Fourier transform is undertaken for each segment yielding Xq and Yq.

Third, Pxx, Pyy and Pxy are calculated for each segment yielding: Iq
xx = |Xq|2, Iq

yy = |Yq|2,

and Iq
xy = XqY

∗
q , so that finally, Pxy may be calculated according to the averages of these

terms as follows (Haykin & Van Veen, 2007):

Pxy = 1
Q

Q∑
q=1

Iq
xy (12)
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If 0 ≤ Pxy ≤ 1 is required, Pxy can be squared and normalized by the WOSA

estimates of Pxx and Pyy, which yields what is known as the magnitude squared coherence

Cxy as follows:

Cxy =
| 1

Q

∑Q
q=1 I

q
xy|2

1
Q

∑Q
q=1 I

q
xx

1
Q

∑Q
q=1 I

q
yy

(13)

This process increases the signal to noise ratio by a factor proportional to the degree of

overlap between the windows. This is because averaging with overlap in the presence of

independently and identically distributed (i.i.d.) noise reduces the variance associated with

the i.i.d. noise in proportion to the ‘true’ signal.

The CPSD of the bivariate/dyadic time series in Figure 14 is shown in Figure 16. It

can be seen that, in spite the large frequency component at eight cycles per month in one

of the time series, the CPSD correctly has a value close to zero. If the two time series

represented fluctuations in the mood of partners in a relationship, the CPSD would be

highlighting that the individuals share common rates of periodic fluctuation.

Dyadic Phase

Note that there is no phase information in the CPSD plot - by taking the power

spectra, the phase information is destroyed. However, it is common for implementations of

CPSD to additionally provide the phase discrepancy between the time series in the dyad,

for each frequency component. It is possible that two time series share the same frequency

components (and therefore register a high CPSD at these frequencies) but for the

components to be shifted in phase with respect to each other. For example, two individuals

who receive their paychecks monthly, but at different times in the month, will likely both

exhibit high CPSD at a rate of once per month. However useful it may be to know about

this commonality in their spectra, it would also be useful to know whether they cycle in

synchrony. In the paycheck example, they do not - one individual may have a lowest

balance for the month on the same day that the other has just received their paycheck.
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The next section explores the use of FFT and CPSD across groups of individuals, and the

notion of phase will be revisited.

Group Analyses

Averaging Spectra and Cross-Spectra

Thus far, the univariate and bivariate time series spectral analyses presented would

be performed at the person- or dyad-level of analysis respectively. This section concerns

the use of spectral analysis over groups of time series (e.g., a number of couples from each

of which the researcher has collected daily diary data for mood). In order to demonstrate

the process, synthetic data may be generated and analysed according to the specification

described below. For real-world problems, simply substitute the data generation steps for

data acquisition steps.

The data simulated for the purposes of this article were for M heterosexual dyads

(i.e., men and women), 60 days worth of data, time series are generated such that two

types of couples exist: the first type has men and women sharing a once-per-month cycle

but for a phase difference of 15 days. The women are also arbitrarily given some additional

rates of fluctuation not shared with the men. The second group are the same as the first,

but for the fact that the women’s once-per-month cycle is offset by eight days, instead of

15. As such, we should expect bimodality in the resulting phase distribution. All time

series contain additive Gaussian noise.

The time series ought first to be individually de-trended and person mean centered

(Gottman & Ringland, 1981; Larsen, 1987; Lester et al., 1985). By person mean centering

the time series, the average value across each of the individuals’ time series becomes zero.

De-trending can be achieved by fitting a first or second order generalized linear model to

each individual time series, and subtracting, at each time point, the corresponding

prediction from the model. At this point, windowing and window amplitude correction

may be applied to mitigate truncation problems. Next, univariate FFTs are computed for
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each of the individuals’ time series one at a time, and then averaged across individual, per

frequency, per group. For example, each of the individuals’ spectra will have corresponding

amplitude parameters. Each of these amplitudes can be averaged over the group, yielding

an average spectrum. Here a group might correspond with a stratification according to

gender. This would then allow one to compare the average spectrum for a man with the

average spectrum for a woman. Note that averaging must be performed after the

magnitude of the FFTs has been computed (i.e., after the L2 norm has been computed

according to Equation 7). Computing the magnitude removes the phase information from

each individual spectrum. Without taking the magnitude, an average in the complex

domain may result in constructive and destructive interference (i.e., waves with phase

shifts may either sum to reinforce each other, or to cancel each other).

In order to undertake a cross-spectral analysis over multiple dyads, CPSDs may be

calculated for each couple individually. Then, similarly to the average univariate FFT

analysis, an average may be performed on the magnitude CPSDs across couples, per

frequency.

Polar Plots

While the CPSDs are being calculated for each dyad, it may be worthwhile storing

the corresponding phase information for each frequency. Note that, because phase wraps

around 2π radians, we need to use polar histograms, rather than regular histograms. An

example is shown in Figure 17. Here, counts extend radially, and the phase discrepancy is

given in degrees around the circumference of the polar plot. The polar histogram exhibits

bimodality, and at this specific frequency (which happens to be once per month), couples

have phase discrepancies of 180 degrees (which is equivalent to 15 days) and 90 degrees

(which is equivalent to eight days). These results therefore corroborate our synthetic data

specification described above. As mentioned, the phase information can only be

meaningfully interpreted at specific, significant frequencies (see below for a description of
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how to establish the statistical significance of a frequency component). Finally, the fact

that phase wraps also means that conventional descriptive statistics are meaningless, and

we encourage researchers to utilize circular equivalents for means and standard deviations

when characterizing such distributions.

Statistics

Significance Testing

For noisy, real-world time series, it may be useful to undertake a form of

null-hypothesis testing with spectral analysis. In order to avoid potential pitfalls associated

with parametric assumptions, and also to enable null-hypothesis testing both on individual

as well as groups of time series, it is recommended to undertake a form of bootstrapping.

Our null hypothesis might be stated as follows: no periodic cyclicity exists in the

time series. In order to test this, an FFT for i.i.d. noise needs to be compared against an

FFT for our time series in question. At this point, it is instructive to illustrate what noise

(i.e., a time series devoid of periodic cyclicity) looks like. Consider the twenty Gaussian,

i.i.d. time series shown in Figure 18(a). Due to the nature of their i.i.d. sampling over time,

there is no auto-correlation structure, besides what might occur spuriously for an arbitrary

sample over an arbitrary duration. The corresponding FFTs for these time series are shown

in Figure 18(b). Due to the finite number of time points (N = 60) there are spurious

indications of cyclicity. However, taking an average across the magnitude spectra yields the

result shown in Figure 19. Even for 20 time series, it can be seen that the average of the

FFTs for i.i.d. time series quickly converges to a flat line, representing the average energy.

It is important to note that the observed time series and the generated i.i.d. noise

(which represent samples from our null distribution) must have the same energy. The same

energy criterion is essential, and thankfully easy to satisfy. The order of the samples in the

original time series can be permuted a large number of times (e.g., 1,000 times), which

constitutes a form of sampling without replacement. The permutations are devoid of
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auto-correlation, providing a set of surrogates against which to compare our original time

series. By taking FFTs of the original time series as well as the 1,000 permuted surrogates,

we can establish the count for which the amplitude of each component in the FFT of the

original signal falls above the corresponding amplitude in the FFTs of the permuted

signals. By dividing this count by the number of comparisons, and multiplying by 100, we

arrive at a percentage chance that the true amplitude of the wave is at least as strong as

the one indicated by the data and analysis, under the assumption that the null effect is

true (i.e., it fulfils the same role as the p-value). The procedure also yields bootstrapped

confidence intervals.

Figure 20 illustrates the process in terms of variance before and after permutation.

On the left, the total variance of f(t) may be attributable to either additive noise ε(t), or

to sinusoidal components (in the Figure, only one component is assumed). On the right of

the Figure, the variance of the signal post-permutation remains same as the total variance

of f(t), but now none of that variance is attributable to sinusoidal components. Note that

Figure 20 is not intended to suggest that the variance may necessarily be additive, only

that some proportion of the variance is attributable either to the noise or to the sinusoidal

component(s). In the section below, we relate the energy and power of a time series to its

variance in order to derive a proxy for effect size.

The process described above is appropriate for an individual time series, but is also

easily extended to the group scenario: the comparison for a group becomes one of the

average FFT across the group, with 1,000 equivalent average FFTs for permuted versions

of the time series in that group. Consider Figure 21. This figure may depict either the FFT

(bold line) of an individual’s time series, and FFTs of the permuted version of this

individual’s time series (faded lines); or it may equally depict a group average FFT (bold

line), and average FFTs of the all permuted time series in the group (faded lines). In either

case, the process is the same: To count how many times the amplitudes of the un-permuted

time series FFT fall above those of the permuted time series FFTs.
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For the example shown in Figure 21, the count results are shown in Figure 22. Here,

the x-axis corresponds with the index of the frequency component, and the y-axis

corresponds with the percentage frequency with which the amplitude of each component

falls above the amplitude of the corresponding component in the permuted time series

FFTs.

Once the significance of each spectral component has been established (and an

adjustment for the alpha level is recommended in the case of multiple frequency hypothesis

testing), a reduced time series model may be built using the amplitudes and phase

information for each of the significant components. For example, if the frequencies of

f1 = 3.5 and f2 = 4.5 are significant, with amplitudes A1 = 0.5 and A2 = 0.2 and phase

shifts of φ1 = 0.2π and φ2 = 0.1π respectively, this information can be used to generate a

model: f ′[n] = A1 sin(2πf1n+ φ1) + A2 sin(2πf2n+ φ2). This forms a simplified model

comprising only the statistically significant components of the original time series which

may be used for forecasting. Alternatively, it may be used to de-seasonalize the original

data, i.e. by computing f [n]− f ′[n] = f ′′[n] where f [n] is the original time series, f ′[n] is

the time series model comprising only significant frequency components, and f ′′[n] is the

de-seasonalized result. An example of before-and-after de-seasonalization is show in Figure

23. In this time series, two dominating cycling components obfuscate a clear quadratic

trend. Spectral analysis thereby allows the researcher to decouple the trend from the

oscillating components to more clearly model other important, underlying patterns (Sims,

1974).

Finally, consider what happens if, instead of counting how many times our original

time series FFT falls above the permuted time series FFTs, we count how many times our

original time series FFT falls below the permuted time series FFTs.4 In this case, instead of

identifying periodicity, we identify a persistence, or a reluctance to change across frequency.

This alternative may also be of interest to researchers, who wish to explore phenomena

4 We owe this idea to personal correspondence with Prof. Michael Renfro.
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that exhibit a form of time-domain inertia.

Effect Sizes

As well as identifying significant frequency components, it may also be of interest to

be able to quantify the importance or strength of these components, much akin to a

measure of effect size in conventional statistics. Despite the apparent in-applicability of

electronic engineering notions such as electrical power and energy to social science data,

these concepts are useful when building analogies for the metrics in the two fields.

Start by assuming the following model: f(t) = A sin(ωt) + ε(t). In words, our model

comprises a sinusoidal function of time, with some additive i.i.d. noise e.g. ε(t) ∼ N (0, 1).

Variance is a quantity usually associated with random variables. Given that a deterministic

sinusoidal function of time sin(ωt) is not a random variable, its variance might be fairly

considered to be zero, and its expectation simply equal to itself i.e. E[sin(ωt)] = sin(ωt).

The expectation and variance of f(t) are therefore equal to the expectation and variance of

the additive noise alone, ε, which are zero and one respectively.

However, by deviating from these formalities and for the sake of this exposition, one

can compute the variance of a time series comprising a deterministic sine wave, as if it were

a random variable, according to the empirical expression for variance, (i.e., the average

squared difference of the sample values from the mean). This assumes person mean

centering and de-trending, which, as described above, is recommended as a data

pre-processing step. In electronic engineering, this empirical variance quantity is actually

known as the electrical power of a signal. The square root of the empirical variance

quantity is the standard deviation, and this is actually the same as what is known in

electronic engineering as the root mean square (RMS) value. The RMS value is often used

to characterize the strength of an a.c. signal, and gives the equivalent level of a d.c. signal

that would dissipate the same amount of electrical power. The squaring operation in Root

Mean Square is required as rectification, and thereby makes all negative values positive,
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yielding a non-zero mean. One can easily switch between RMS and the peak amplitude of

a sine wave by multiplying or dividing by the square root of two, respectively. If one wants

to compute the energy of a time series, the variance (or power) can be multiplied by the

length of the signal. For example, the energy of a time series of duration N = 60 days that

has a variance/power equal to one is 60. Here, the units have been omitted because they

depend on the original measure used (for example, in electronics, the power might be

measured in Watts, and the energy in the above calculation would be measured in

Watt-Days).

The FFT diagrams presented thus far are known as amplitude spectra, as they

represent the amplitudes of the frequency components in the Fourier decomposition. As

described already, these amplitude spectra can easily be converted into power spectra (or

periodograms) by taking the raw FFT output and taking the squared magnitude before

normalizing by the length of the signal. The power spectrum therefore provides the

variance (or power) of each of the constituent frequency components. We recommend that

these per-frequency variance values be used as proxies for effect size.

Proportion of Variance Explained

As described above, the power spectrum provides a means to decompose the time

series into the individual contributions of variance/power from all frequency components,

and we proposed that these per-frequency variance quantities be treated as measures of

effect size. Taking inspiration from the Signal to Noise Ratio (SNR) in electronic

engineering (Proakis & Manolakis, 1996), in order to make these measures comparable

across studies we propose a ratio which we call the Signal to Variance Ratio (SVR).

Essentially, by summing across every power spectrum component, the energy of the wave is

computed (similarly to how multiplying the time series variance by the number of time

points also gives the energy). The ratio of a particular power component Vk to the total

sum of all components ∑K
k Vk therefore provides a measure of the relative contribution of
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each component:

SVRk = Vk∑K
k Vk

(14)

Whether or not the numerator and denominator are both multiplied by the number

of components to normalize them according to power or energy is irrelevant as the ratio

will remain the same. The SVR can be multiplied by 100 to provide an estimation in terms

of a percent contribution.

Given the spectral analogies with conventional statistical concepts such as effect

size, proportion of variance explained, and null hypothesis testing, one is equipped with the

relevant tools to additionally undertake statistical inference with confidence intervals, and

statistical power analyses.

Discussion

The purpose of this tutorial was to introduce the theory and application of spectral

and cross-spectral analysis, which allow researchers to identify cycling components in time

series data. There are a limited number of examples of its application in the social sciences

(Campbell et al., 1991; Gottman, 1979; Gottman & Ringland, 1981; Larsen, 1987; Larsen

et al., 2009; Larsen & Kasimatis, 1990; Lester et al., 1985; Vowels et al., 2018;

R. M. Warner et al., 1987) and, to the best of our knowledge, there are no primers or

practical guidelines for how to apply it in social sciences. This paper provides a much

needed introduction to spectral analysis and our hope is that it will help to encourage

researchers to consider potential periodicity and synchrony in their data. In this tutorial

we have: Extended the traditional spectral and cross-spectral methodologies to enable a

non-parametric, bootstrapped estimation of the significance of univariate and bivariate

frequency components; described how power spectra may be interpreted to derive a proxy

for effect size; discussed why and how to undertake windowing; and illustrated how the use

of circular statistics enables us to investigate the phase offset between two signals.
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There are a number of strengths to spectral analysis which are worth highlighting.

First, the FFT and DFT are bijective transforms, not models, which means that they

retain all of the information present in the original time domain representation. The

methods provide researchers with a new perspective for interrogating data and identifying

patterns which might otherwise be visually unidentifiable. Once the frequency domain

spectra have been derived, researchers can then identify significant spectral components

and associated effect sizes in order to build time series models. Second, the bootstrapping

technique that we presented as a means to estimate significance is non-parameteric, and

therefore does not rely on potentially restrictive assumptions. This bootstrapping

technique can also be applied to estimate the significance of the spectral components in

individual, as well as groups of, time series. It thereby provides clinicians with a means to

build time series models on a case by case basis. Third, the two advantages above are

equally applicable to cross-spectral analysis, which additionally provides a means to

understand synchrony in dyadic data. Fourth, spectral analysis can also be useful as a

descriptive tool as it provides a convenient way of extracting cycles from individual’s data

(Chow et al., 2005). Finally, our proposal for the use of circular statistics enables

researchers to interrogate data that wraps, which in our case was phase information, but

could be equally useful for calendar data where, for example, the first day of the year

should be considered to be one day away from the last day of the year.

While this paper provides an introduction to spectral and cross-spectral analysis,

there are many potential extensions that have not been discussed in detail. For example, we

briefly referred to spectrograms (Rabiner & Schafer, 1978) which provide an estimation of

the spectral components as they evolve over time. Spectrograms, for example, can be used

to model dampening effects similar to the damped oscillator model (Chow et al., 2005).

However, spectrograms work by undertaking multiple FFTs over a sliding window, and the

requirements for adequate sampling frequency and sampling duration are challenging to

fulfil when collecting typical social sciences data. Another extension involves the use of
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spectral parameters/coefficients from an FFT as features in other analyses. For example,

the magnitude parameters can be used as predictors in ordinary least squares regression,

dynamic factor models, or features in machine learning algorithms such as random forests,

deep neural networks, and computer vision algorithms (Breiman, 2001; Goodfellow et al.,

2016; Molenaar, 1987; Szeliski, 2010). Different elements from the spectral decomposition

(e.g., amplitude, phase, couple CPSD, significant frequencies) can also be used as outcomes

in other models. Finally, we also alluded to the use of spectral analysis for time series

decomposition (i.e., for decomposing a time series into its trend and seasonal components)

(Brockwell & Davis, 2002). Time series decomposition is important in removing the

influence of seasonality on the estimation of the trend and overall growth pattern. Without

such de-seasonalization, the estimation of the trend may be meaningless, and become

dependent on the start and end points of the sampling duration (e.g., see Figure 1).

There are also a number of different flavors of spectral analysis, which may yield

different results. One example is wavelet analysis, which is more robust in analyzing signals

that have spectral compositions that change over time (Abramovich et al., 2000; Nason &

Savchev, 2014). Other options include variants of Spectral Proper Orthogonal

Decomposition, which may be more computationally complex, but provide researchers with

additional avenues for identifying patterns/commonality within signals (Paul & Verma,

2016; Sieber et al., 2016; Towne et al., 2017).

As part of the work, we have provided a Jupyter Notebook (written in Python 3.6)

that explains how to conduct spectral analysis step by step. This notebook contains many

of the simulation examples used in this tutorial. It is worth noting that we have also

applied these techniques to real social sciences data, and a case study can be found in

Vowels et al., 2018. Spectral analysis may also be undertaken in R (for an example, see

Wearing, 2010). Note that some functions (e.g., windowing options) described in this paper

and in the Jupyter Notebook may not be available as ready functions. Many of the

standard statistical programs such as SPSS and SAS also have their own spectral analysis
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functions that may be sufficient for some analyses.

Limitations and Considerations

There are several limitations for spectral analysis: First, there is a trade-off between

time domain and frequency domain resolution/accuracy (Jenkins & Watts, 1968;

MathWorks, 2018; Stowell & Plumbley, 2014; Watkinson, 2001). This trade-off between

time domain accuracy and frequency domain accuracy is analogous to the Heisenberg

uncertainty principle: Accuracy cannot be achieved simultaneously in both domains. In

other words, the longer and less temporally specific the time domain sample is, the higher

the accuracy in the frequency domain (assuming the frequency content does not change

over the sampling duration). Conversely, the shorter and more temporally specific the time

domain sample is, the less precise the frequency domain representation is. However, for

signals that are stationary, in that the characteristics of the periodic components do not

significantly vary over time, high time domain accuracy is not important, and it makes

more sense to maximize the frequency domain accuracy. For example, in order to identify

cycling components in individuals’ mood over the course of a week, researchers may attain

more accurate estimations of the frequencies of the components the longer the period of

study is. In this case, researchers should study the individuals over the course of as many

weeks as is feasible. In doing so, the assumption is that the frequency components remain

stationary over the course of that period. If the researchers suspect that the frequency

content changes over the course of the data collection period, they may utilize time

windowing approaches and compute a spectrogram.

Second, the signal must be sampled at a frequency that is at least twice the highest

frequency of interest (Jenkins & Watts, 1968; Watkinson, 2001). In other words, the

highest frequency that can be recovered is a frequency half the sampling frequency, and this

is known as the Nyquist limit. Relating this consideration to the example above, in seeking

to identify mood fluctuations that occur once daily, sampling must occur at least twice a
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day. Furthermore, the sampling must be undertaken regularly and consistently such that

the time period in between samples does not vary dramatically. In reality, if a researcher is

collecting daily reports from participants, they may complete the report at different times

each day. Discussion of how to deal with these instances can be found elsewhere (Voelkle &

Oud, 2013) Additionally, there are situations in which the signal may not always cycle at

the same frequencies. For example, mood which is thought to cycle weekly, may be

impacted by longer weekends or holidays and the calendar months vary in their length.

These will add variation to the data making its spectral decomposition more ambiguous.

Third, there should ideally be no missing data points (Cowpertwait & Metcalfe,

2009), although Broersen (2006) and Christmas (2013) discuss potential ways around this

common problem. Our suggestion is that researchers interpolate the time series (e.g., with

polynomial splines; Won Suk et al., 2019) and subsequently re-sample it at regular

intervals. Fourth, because spectral analysis is not a modelling technique but rather a

transform, it is not possible to model measurement error. When researchers have access to

multivariate time series data, they may wish to take their analysis further by using

dynamic factor models rather than stopping after the frequency domain transformation

(Molenaar, 1987). Finally, spectral analysis cannot be used to identify causal influence

(i.e., which variable influences the other variable in a bivariate cross-spectral analysis).

Similarly, it cannot tell which variable precedes the other - the phase information is

ambiguous in this regard, and only tells us the relative offset between components and not

which component comes first. Bivariate time-series analysis may be a better choice in cases

where a researcher believes autocorrelation may be an issue, but wishes to test for

cross-correlation and interaction between time series (Gottman & Ringland, 1981).

Many of the usual statistical assumption checks may not be relevant to whether

spectral analysis can be used on a particular set of time series data. For instance, a test of

normality is not relevant - this is trivially demonstrated by considering the distribution of a

sine wave, which resembles a Beta(0.5, 0.5) distribution, and the time series samples
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therefore need not be sampled from a parametric distribution. Furthermore, tests for

outliers which exhibit large deviations from the mean of a group’s time series are also not

relevant, because such mean offsets are either removed as part of individual de-trending, or

constitute the zeroeth frequency component (i.e., the d.c. offset). Whether or not the

individuals exhibiting such outlying characteristics are problematic for other reasons (e.g.

measurement error) is, similarly, an orthogonal issue. Researchers are, however, encouraged

to evaluate the distribution of spectral frequency components after a spectral analysis has

been undertaken, in order to identify individuals with outlying spectral characteristics (e.g.

individuals with outlying component amplitudes, or individuals with outlying spectral

compositionality). Our bootstrapped approach to significance testing makes no parametric

assumptions about the distribution of spectral amplitudes, but this is not to say that these

distributions should not be interrogated for outliers or other distributional anomalies.

Finally, interested researchers are pointed to work by Percival and Walden, 1998 who

discuss some of the more detailed assumptions associated with utilization of a particular

estimation algorithm for univariate spectral analysis.

In conclusion, spectral and cross-spectral methods are important for uncovering

cycling components in time series data. Ignoring the presence of these components has the

potential to render trend estimations meaningless, and an investigation of the spectral

components themselves may yield new insight into how many social phenomena fluctuate

over time. The techniques presented in this tutorial (and in the accompanying Jupyter

Notebook) enable researchers to perform traditional significance and effect size estimation

without restrictive parametric assumptions. It is hoped that researchers can extend their

analytical arsenal with the techniques, in order to investigate important social phenomena

that fluctuate over time.
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Figure 1

Cycles and a Linear Trend

Note. A cycling phenomenon, with no linear trend (solid line), may be badly misrepresented by its

corresponding linear regression model.
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Figure 2

A Simple Sine Wave

Note. An example of a univariate, discrete-time sampled sinusoidal function for f [n] = 1× sin(2×

π × 2× n) for n = [0, 1/N, ..., 1− (1/N)] and N = 60.

Figure 3

A Phase Shifted Sine Wave

Note. The same sine wave as in Figure 3, shifted by π radians: f [n] = 1 sin(2×π×2×n−2π(15/30)).
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Figure 4

A Sum of Sine Waves

Note. Cumulative sums of sine waves approximating a square/rectangular wave. Each wave includes

an additional component.

Figure 5

FFT of the Time Series in Figure 2
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Figure 6

An Example Time Series

Note. Time series for f [n] = sin(2× π × 4.5× n− 2π(15/30))
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Figure 7

FFT of the Time Series in Figure 6

Note. As can be seen from the graphs for FFTs, there is a potentially non-zero amplitude zero

frequency component included. Whilst a cycle cannot technically be cycling at a rate of zero cycles

per unit time, this component actually represents the d.c. offset of the wave, where d.c. stands

for direct current and is terminology borrowed from electronics. In contrast, a.c. (i.e, alternating

current) represents cycling, or oscillating components, but a.c. is rarely (if ever) used in spectral

analysis. If researchers person mean-center their time series, this offset will not exist.
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Figure 8

An Example Time Series

Note. Time series for f [n] = sin(2× π × 4.5× n− 2π(15/30)) + ε[n] where ε ∼ N (0, 1).

Figure 9

FFT of an Example Time Series with Noise

Note. FFT of the time series in Figure 8.
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Figure 10

Example Time Series with Increased Complexity

Note. Time series for f [n] = sin(4πn) + sin(16πn) + 0.5 sin(32πn) + 0.4ε[n] where ε ∼ N (0, 1),

n = [0, 1/N, ..., 1− (1/N)] and N = 60.

Figure 11

The FFT for the Time Series Shown in Figure 10
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Figure 12

Example Hann-Windowed Time Series

Figure 13

FFTs for Example Hann-Windowed and Un-Windowed Time Series



SPECTRAL ANALYSIS 50

Figure 14

Bivariate Time Series

Figure 15

FFTs of the Bivariate Time series Shown in Figure 14
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Figure 16

CPSD of the Dyadic Time Series in Figure 14

Figure 17

CPSD Phase Histogram

Note. An example CPSD phase polar histogram for a specific frequency component.
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Figure 18

Twenty Time Series (Left) and Corresponding FFTs (Right) for Gaussian Noise

(a) Time Series (b) FFTs

Figure 19

Average FFT for Gaussian Noise

Note. Average FFT for twenty Gaussian noise time series.
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Figure 20

Variance Remains Constant Before and After Permutation

{
Var[sin(ωt)]

Var[ϵ(t)]

Var[f(t)]
{

Post-permutation
Variance

Pre-permutation
Variance

f(t)′
A sin(ωt)

ϵ(t){

Figure 21

Example FFT and FFT of Permuted Time Series.
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Figure 22

Significant Component Counts

Note. For each frequency component, this graph shows the percentage frequency that the amplitude

of this component falls above the corresponding amplitude components in the randomized/permuted

time series FFTs. Dashed line corresponds with the 95% confidence bound.

Figure 23

De-Seasonalizing Time Series

Note. A time series composed from a quadratic trend and two significant frequency components

(solid line) and the same time series after de-seasonalizing the time series by subtracting the cycling

components.
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