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Causal reasoning is a crucial part of science and human intelligence. In order to discover causal relationships
from data, we need structure discovery methods. We provide a review of background theory and a survey
of methods for structure discovery. We primarily focus on modern methods which leverage continuous
optimization, and provide reference to further resources such as benchmark datasets and software packages.
Finally, we discuss the assumptive leap required to take us from structure to causality.

1 INTRODUCTION
Causal understanding has been described as ‘part of the bedrock of intelligence’ [145], and is
one of the fundamental goals of science [11, 70, 183, 241–243]. It is important for a broad range
of applications, including policy making [136], medical imaging [30], advertisement [22], the
development of medical treatments [189], the evaluation of evidence within legal frameworks
[183, 218], social science [82, 96, 246], biology [235], and many others. It is also a burgeoning
topic in machine learning and artificial intelligence [17, 66, 76, 144, 210, 247, 255], where it has
been argued that a consideration for causality is crucial for reasoning about the world. In order to
discover causal relations, and thereby gain causal understanding, one may perform interventions
and manipulations as part of a randomized experiment. These experiments may not only allow
researchers or agents to identify causal relationships, but also to estimate the magnitude of these
relationships.
Unfortunately, in many cases, it may not be possible to undertake such experiments due to

prohibitive cost, ethical concerns, or impracticality. For example, to understand the impact of
smoking, it would be necessary to force different individuals to smoke or not-smoke. Researchers
are therefore often left with non-experimental, observational data. In the absence of intervention
and manipulation, observational data leave researchers facing a number of challenges: Firstly, obser-
vational datasets may not contain all relevant variables - there may exist unobserved/hidden/latent
factors (this is sometimes referred to as the third variable problem). Secondly, observational data
may exhibit selection bias - for example, younger patients may in general prefer to opt for surgery,
whereas older patients may prefer medication. Thirdly, the causal relationships underlying these
data may not be known a priori - for example, are genetic factors independent causes of a particular
outcome, or do they mediate or moderate an outcome? These three challenges affect the discovery
and estimation of causal relationships.
To address these challenges, researchers in the fields of statistics and machine learning have

developed numerous methods for uncovering causal relations (causal discovery) and estimating
the magnitude of these effects (causal inference) from observational data, or from a mixture of
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observational and experimental data. Under various (often strong) assumptions, these methods
are able to take advantage of the relative abundance of observational data in order to infer causal
structure and causal effects. Indeed, observational data may, in spite of the three challenges listed
above, provide improved statistical power and generalizability compared with experimental data
[45].
In this paper we review relevant background theory and provide a survey of methods which

perform structure discovery (sometimes called causal induction [81]) with observational data or
with a mixture of observational and experimental data. A number of reviews, surveys and guides
are already available (see e.g. [70, 94, 224]), however, these reviews cover combinatoric approaches
to causal discovery, whereas we primarily focus on the recent flurry of developments in continuous
optimization approaches. Furthermore, the existing reviews are relatively short, and we attempt
to provide a more scoping introduction to the necessary background material. We also seek to
provide more extensive coverage of continuous optimization approaches than other current reviews,
which focus on combinatoric approaches. Finally, we provide references to further useful resources
including datasets and openly available software packages.

The structure of this survey is as follows: Following an overview of relevant background infor-
mation in Section 2, we provide an overview of approaches to structure discovery in Section 3,
including a list of common evaluation metrics. In Section 4 we briefly outline a range of combina-
toric approaches, before focusing on continuous optimization approaches in Section 5. We begin
6 by referencing several additional resources including reviews, guides, datasets, and software
packages. We also provide a summary and discussion of the methods covered in Section 6, and note
various opportunities for future work and future direction. Many of the methods we review in this
survey seek to discover and interpret the learned structure causally. Whilst this is a laudable aim, we
are reminded of important commentaries (e.g.,[42, 58, 107]) which argue for appropriate skepticism
and care when making the leap from observation to causality via causal discovery methods. We
therefore conclude Section 6, as well as this survey as a whole, by providing a discussion on these
issues.

2 BACKGROUND - DEFINITIONS AND ASSUMPTIONS
In this section we provide working definitions of key concepts in structure discovery. We include
a presentation of a common framework used in structure discovery (namely, that of structured
graphical representations) as well as a number of common assumptions.

2.1 Causality and SCMs
In spite of some notable reluctance to treat graphs learned from observational data as causal
[42, 58, 107], we acknowledge that it is a common and worthwhile aim, and begin by presenting
a working definition of causality and its popular systematization in Structural Causal Models
(SCMs). Causality eludes straightforward definition [223], and is often characterized intuitively
with examples involving fires and houses [183], firing squads [100], and bottles and rocks [101].
One definition of what is known as counterfactual causality is given by by Lewis (1973) [143] as
follows:1

"We think of a cause as something that makes a difference, and the difference it makes
must be a difference from what would have happened without it. Had it been absent,
its effects – some of them, at least, and usually all – would have been absent as well".

Lewis’ definition is counterfactual in the sense that he effectively describes ‘what would have
happened if the cause had been A*, given that the effect was B when the cause was A’. Seemingly,
1See discussion in Menzies & Beebee (2020) [160]
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Fig. 1. Transitioning from a typical DAG representation (left) to a structural equation model (right). Grey
vertices are unobserved/latent random variables.

this definition is compatible with the Pearlian school of causal reasoning. Specifically, in the context
of what are known as SCMs:

"Given two disjoint sets of variables 𝑋 and 𝑌 , the causal effect of 𝑋 on 𝑌 , denoted as...
𝑃 (𝑦 |𝑑𝑜 (𝑥)), is a function from 𝑋 to the space of probability distributions on 𝑌 . For each
realization of 𝑥 of 𝑋 , 𝑃 (𝑦 |𝑑𝑜 (𝑥)) gives the probability of 𝑌 = 𝑦 induced by deleting
from the model [𝑥𝑖 = 𝑓𝑖 (𝑝𝑎𝑖 , 𝑢𝑖 ), 𝑖 = 1..., 𝑛,] all equations corresponding to variables in
𝑋 and substituting 𝑋 = 𝑥 in the remaining equations."

This definition [183, p.70] requires further examination. Firstly, the model 𝑥𝑖 = 𝑓𝑖 (𝑝𝑎𝑖 , 𝑢𝑖 ), 𝑖 =
1..., 𝑛, is a Structural Equation/Causal Model (SEM/SCM) which indicates assignment of the value
𝑥𝑖 in the space of 𝑋 to a function of its structural parents 𝑝𝑎𝑖 and exogenous noise 𝑢𝑖 . We elaborate
on what parents are (as well as children, descendants etc.) below. Secondly, the 𝑑𝑜 notation [183]
indicates intervention, where the value of 𝑥 is set to a specific quantity. The structure (including
attributes such as parents) can be represented graphically using various types of graphical models
(e.g., Directed Acyclic Graphs). Figure 1 shows the relationship between a DAG and a general
Structural Equation Model. Sometimes this SEM is also called a Functional Causal Model (FCM),
where the functions are assumed to represent the causal mechanisms [75]. The use of the assignment
operator ‘:=’ makes explicit the asymmetric nature of these equations. In other words, they are
not to be rearranged to solve for their inputs. To transform these relationships from mathematical
relationships to causal relations, the Causal Markov Condition is imposed, which simply assumes
that arrows (and their entailed conditional independencies) represent causal dependencies [188,
p.105-6].
The ultimate benefit of the graphical and structural model frameworks is that they, at least

in principle and under some strong assumptions, enable us to use observational data to answer
scientific questions such as ‘how?’, ‘why?’, and ‘what if?’ [184].

2.2 Graphical Models
For background on graphical models, see work by Koller and Friedman (2009) [133]. We follow a
similar formalism to Peters et al. (2017) [188] and Strobl (2018) [225]. A graph G(X, E) represents
a joint distribution 𝑃X as a factorization of 𝑑 variables X = {𝑋1, ..., 𝑋𝑑 } using 𝑑 corresponding
nodes/vertices 𝑣 ∈ V and connecting edges (𝑖, 𝑗) ∈ E, where (𝑖, 𝑗) indicates an edge between 𝑣𝑖 and
𝑣 𝑗 . If two vertices 𝑖 and 𝑗 are connected by an edge we call them adjacent, and, can also denote this
in terms of the corresponding variables X as 𝑋𝑖 → 𝑋 𝑗 or 𝑋𝑖 ← 𝑋 𝑗 (directed), 𝑋𝑖 — 𝑋 𝑗 (undirected),
𝑋𝑖 ↔ 𝑋 𝑗 (bidirected),𝑋𝑖 ---◦ 𝑋 𝑗 or𝑋𝑖 ◦---- 𝑋 𝑗 (partially undirected),𝑋𝑖 ◦→ 𝑋 𝑗 or𝑋𝑖 ←◦ 𝑋 𝑗 (partially
directed), or𝑋𝑖 ◦--◦ 𝑋 𝑗 (nondirected). A graph comprising entirely undirected edges forms a skeleton.
It is also possible to have self-loops, although these occur relatively infrequently in the structure
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discovery literature. These different edge types allow us to define a range of graph types and
relationships.

An undirected path exists if there are edges connecting two vertices regardless of the edge types
between them. In contrast, a directed path constitutes directed edges with consistent arrowhead
directions. We can define a parent 𝑝𝑎 𝑗 as a vertex 𝑣𝑖 with child 𝑣 𝑗 connected by a directed edge
𝑋𝑖 → 𝑋 𝑗 such that (𝑖, 𝑗) ∈ E but ( 𝑗, 𝑖) ∉ E. Further upstream parents are ancestors of downstream
descendants if there exists a directed path constituting 𝑖𝑘 → 𝑗𝑘+1 for all 𝑘 in a sequence of vertices.
An immorality or v-structure describes when two non-adjacent vertices are parents of a common
child. A collider is a vertex where incoming directed arrows converge.

It is possible for directed cycles to occur when following a directed path results in the visitation
of a vertex more than once (e.g., 𝑋𝑖 → 𝑋 𝑗 → 𝑋𝑘 → 𝑋𝑖 ). Many phenomena in nature exhibit cyclic
properties and feedback, and ignoring this possibility has the potential to induce bias [69, 206, 225].
If all edges are directed, and there are no cycles, we have the well-known class of Directed Acyclic
Graphs (DAGs). On the other hand, if all edges are directed but there is no restriction preventing
cycles, we have a Directed Graph (DG).

2.3 The Markov Assumption, 𝑑-Separation, and 𝑑-Faithfulness
The graphs are usually assumed to fulfil theMarkov property, such that the implied joint distribution
factorizes according to the following recursive decomposition, characteristic of Bayesian networks
[183]:

𝑃 (X) =
𝑑∏
𝑖

𝑃 (𝑋𝑖 |𝑝𝑎𝑖 ) (1)

This decomposition relates to the notion of 𝑑-separation. Two vertices 𝑋𝑖 and 𝑋𝑘 are 𝑑-separated
by the set of vertices S if 𝑋 𝑗 ∈ S in any of the following structural scenarios [188]:

𝑋𝑖 → 𝑋 𝑗 → 𝑋𝑘

𝑋𝑖 ← 𝑋 𝑗 ← 𝑋𝑘

𝑋𝑖 ← 𝑋 𝑗 → 𝑋𝑘

(2)

They are also 𝑑-separated if 𝑋 𝑗 and none of the descendants of 𝑋 𝑗 are in set S in the following
structural scenario (collider):

𝑋𝑖 → 𝑋 𝑗 ← 𝑋𝑘 (3)

If the DAG’s 𝑑-separation properties hold (an assumpion of faithfulness - see below), they
imply Markovian conditional independencies in the joint distribution, which can be denoted as
𝑋𝑖 |= 𝑃X𝑋𝑘 |𝑋 𝑗 . In terms of the DAG, disjoint (i.e., non-overlapping) sets of variables A and B are
𝑑-separated by disjoint set of variables S in graph G if A |= 𝑑−𝑠𝑒𝑝B|S [188], and are, conversely
𝑑-connected if this conditional independence in the graph does not hold.

The assumption of 𝑑-faithfulness is that any conditional independencies implied by the graph,
according to its𝑑-separation properties, are reflected in the joint distribution 𝑃X. More formally [188,
p.107], for joint distribution 𝑃X and DAG G, the assumption of𝑑-faithfulness holds ifA |= 𝑃XB|C =⇒
A |= 𝑑−𝑠𝑒𝑝B|C. One example of a violation of 𝑑-faithfulness occurs when the influence of two paths
cancel each other out, resulting in a DAG with different implied conditional independencies to
those present in the joint distribution.

2.4 Markov Equivalence Class (MEC) and Completed Partially Directed Acyclic
Graphs (CPDAGs)

The conditional independence constraints implied by a graph’s 𝑑-separation properties are not
always enough to uniquely identify it. Whether a graph can be uniquely identified is known as
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Fig. 2. Showing a skeleton, a CPDAG, and the Markov Equivalence set of graphs. Variable C is a collider, and
so the direction of incoming arrows can be identified from conditional independencies.

the problem of identifiability, and a significant body of work has been devoted to identifying
scenarios for which the true graph is identifiable (e.g., linear functional form with non-Gaussian
errors [103], or nonlinear functional forms with additive noise [102]).2 As such, there are situations
in which multiple graphs satisfy the same conditional independencies. For example, conditional
independence implied by 𝑋𝑖 |=𝑋𝑘 |𝑋 𝑗 is present in the graph 𝑋𝑖 → 𝑋 𝑗 → 𝑋𝑘 as well as the graphs
𝑋𝑖 ← 𝑋 𝑗 ← 𝑋𝑘 and 𝑋𝑖 ← 𝑋 𝑗 → 𝑋𝑘 , in spite of the fact that these graphs have drastically different
causal implications. The class of graphs which represent the same set of conditional independencies
together constitute the Markov Equivalence Class (MEC). Graphs belong to the same equivalence
class when they have the same skeleton and the same immoralities [245].
Completed Partially Directed Acyclic Graphs (CPDAGs) can be used to represent an MEC. In

CPDAGs, an edge is only directed if there is only one graph in the MEC with an edge in that
direction, otherwise, if there is uncertainty about the direction, it is left ‘non-directed’ using ◦--◦ .
One might wonder whether there are any MECs without undirected edges, and indeed there are. A
collider or v-structure forms an MEC with only one valid DAG: 𝑋𝑖 → 𝑋 𝑗 ← 𝑋𝑘 . This is because
conditioning on 𝑋 𝑗 makes 𝑋𝑖 and 𝑋𝑘 𝑑-connected. An example of a skeleton graph, a CPDAG, and
corresponding MEC graphs are shown in Figure 2.

2.5 Assumption: Sufficiency
One of the challenges with using observational data is the assumption that all relevant data have
been collected/observed. This is less problematic in the case of Randomized Controlled Trials
(RCTs) because the randomization itself helps mitigate the effect of confounding which would
otherwise imbalance the treatment and control groups.3 In observational settings, unobserved
confounding can significantly bias effect estimates (even reversing their direction). Whilst it is
possible to try to infer hidden confounders from observational data using latent variable models
(see e.g. [150, 247, 249], a large number of causal discovery methods assume sufficiency, which is
the assumption that there are no unobserved confounders. The assumption of sufficiency is strong
and may often be inappropriate or overly restrictive. If the assumption does not hold, the set of
observed variables is (causally) insufficient [20] and a DAG comprising only the observed variables
can not be used (and the DAG is said to not be closed under marginalization) [104].

2.6 Acyclic Directed Mixed Graphs (AGMGs) and Maximal Ancestral Graphs (MAGs)
and𝑚-separation

In the presence of unobserved confounding, an Acyclic Directed Mixed Graph (ADMG) may be
used. ADMGs represent hidden confounding as bidirected edges. For example, the confounding
relationship given by 𝑋𝑖 ← 𝐻 → 𝑋 𝑗 → 𝑋𝑘 can, in the absence of 𝐻 , be represented in an ADMG
as 𝑋𝑖 ↔ 𝑋 𝑗 → 𝑋𝑘 .
2One may define an SEM defined on a DAG as identifiable if there are no other SEMs that induce the same joint distribution
with a different DAG [175].
3In reality, limited sample sizes (which are often encountered with expensive RCTs) can still render this issue problematic
[45].
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Fig. 3. Showing the relationship between the true DAG and its representation using a MAG and a PAG.
Shaded vertex is a hidden/unobserved confounding variable. Adapted from [188, p.179].

Maximal Ancestral Graph (MAG) can also be used to represent hidden confounding, and have the
further capacity of representing selection bias (i.e. as might occur when a certain sub-population is
sampled). MAGs satisfy the following three properties [3, 199, 200]: (1) there are no directed cycles
(acyclicity); (2) if an edge 𝑋𝑖 ↔ 𝑋 𝑗 exists (which implies 𝑋𝑖 is the spouse of 𝑋 𝑗 ) then there are no
directed paths between 𝑋𝑖 and 𝑋 𝑗 ; (3) if an edge 𝑋𝑖 — 𝑋 𝑗 exists (which implies 𝑋𝑖 is the neighbour
𝑋 𝑗 ) then 𝑋𝑖 and 𝑋 𝑗 have no spouses or parents. This edge is used to represent selection bias (i.e.
where a subpopulation has been sampled according to some condition).

The definitions of ancestor and descendent translate naturally fromDAGs (see above) to MAGs, as
does the definition for 𝑑-separation, which becomes𝑚-separation. In the latter case, the conditions
for 𝑑-separation in Equations 2 and 3 hold, substituting any confounding variable relationships
(e.g.,𝑋𝑖 ← 𝐻 → 𝑋 𝑗 ) with a bidirected arrow (e.g.,𝑋𝑖 ↔ 𝑋 𝑗 ). In the presence of selection bias, a𝑋𝑖 —
𝑋 𝑗 edge can be used. Readers are directed to [3, 199, 200] for a more detailed and formal exposition.

The assumption of𝑚-faithfulness translates naturally from 𝑑-faithfulness for DAGs (see above)
to MAGs, according to the conditional independencies implied by𝑚-separation.

2.7 Partial Ancestral Graphs (PAGs)
Similarly to how the MEC of a set of DAGs was represented using a CPDAG, the MEC for a set
of MAGs can be representing using a Partially Ancestral Graph (PAG). PAGs make use of edges
𝑋𝑖 ◦--◦ 𝑋 𝑗 ,𝑋𝑖 ◦→ 𝑋 𝑗 , and𝑋𝑖 ---◦ 𝑋 𝑗 . Edges with arrowheads indicate that arrowheads are present in
all MAGs in the associated MEC. A tail (i.e., an edge without either a circle mark or an arrowhead)
indicates that the tail is present in all MAGs in the associated MEC. Circle marks (as with CPDAGs)
indicate uncertainty in the edge mark, such that the MEC contains MAGs in which the edge mark
is either a tail or an arrowhead. [94, 188]. An example of a DAG and its equivalent MAG and PAG
are shown in Figure 3.

2.8 Other Definitions and Assumptions
Other types of graph used to represent causal structure include Partially Oriented Induced Path
Graphs (POIPGs) [188, 223], Single World Intervention Graphs (SWIGs) [24, 197, 198], 𝜎-connection
graphs [57], undirected graphs [12], interaction and component graphs for dynamic systems [41],
Maximal Almost Ancestral Graphs (MAAGs) [225], psi-ECs [112], Patterns [264], and arid, bow-free,
and ancestral ADMGs [20]. There are also other types of assumptions relating to the functional
form of the structural relationships (e.g., linear or non-linear) as well as the parametric form of the
marginals and the errors (e.g., Gaussian or non-Gaussian). In the interests of brevity, we have not
discussed these additional graph-types and assumptions here, but encourage interested readers to
consult the listed references.
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3 STRUCTURE DISCOVERY METHODS
We consider four approaches to structure discovery: constraint-based, score-based, those exploiting
structural asymmetries, and those exploiting various forms of intervention.4 We begin by introduc-
ing these four approaches. Each structure discovery method may be sub-categorized into those
which seek to identify a graphical structure via combinatoric/search-based approaches, or those
which seek to identify a graphical structure via continuous optimization. Previous reviews exist
for the former (e.g., [70, 94, 224]), so we primarily focus on the latter. Finally, methods may be
categorized as local, whereby edges are tested one at a time, or global, whereby an entire graph
candidate is tested.

3.1 Constraint-Based and Score-Based Approaches
Most constraint-based approaches test for conditional independencies in the empirical joint distri-
bution in order to construct a graph that reflects these conditional independencies.5 According to
the discussion above, there are often multiple graphs that fulfil a given set of conditional indepen-
dencies, and so it is common for constraint-based approaches to output a graph representing some
MEC (e.g., a PAG). Unfortunately, conditional independence tests require large sample sizes to be
reliable, and Shah and Peters (2020) [212] discuss further challenges to controlling Type I errors.6
Score-based approaches test the validity of a candidate graph G according to some scoring

function 𝑆 . The goal is therefore stated as [188]:
Ĝ = argmaxG over X𝑆 (D,G) (4)

where D represents the empirical data for variables X. Common scoring functions include the
Bayesian Information Criterion (BIC) [67], the Minimum Description Length (as an approximation
of Kolmogorov Complexity) [84, 116, 122], the Bayesian Gaussian equivalent (BGe) score [67], the
Bayesian Dirichlet equivalence (BDe) score [93], the Bayesian Dirichlet equivalence uniform (BDeu)
score [93], and others [105, 110, 111].

3.2 Exploiting Structural Asymmetries
There is no way to rule out scenarios whereby a joint distribution admits SCMs indicating either of
the structural directions𝑋𝑖 → 𝑋 𝑗 or𝑋𝑖 ← 𝑋 𝑗 , thereby making the induction of causal directionality
from observation alone, impossible. However, if some additional assumptions are made about
the functional and/or parametric forms of the underlying true data-generating structure, then
one can exploit asymmetries in order to identify the direction of a structural relationship. These
asymmetries manifest in various ways, including non-independent errors, measures of complexity,
and dependencies between marginals and cumulative distribution functions. Methods which exploit
such asymmetries are typically local methods, as they are only able to test edges one at a time (pair-
wise/bivariate causal directionality), or to test triples (with the third variable being an unobserved
confounder) [103]. They may, of course, be extended to construct full-graphs by iteratively testing
pairwise relationships (see e.g. the Information-Geometric Causal Inference algorithm [114]). We
now briefly provide some examples of structural asymmetries, and direct interested readers to
Mooij et al. (2016) [166] for a detailed review.

3.2.1 Additive Noise. Given the linear structural equations 𝑋 = 𝑈𝑋 and 𝑌 = 𝑋 + 𝑈𝑌 such that
𝑈𝑌 |=𝑋 , we expect the residuals from a regression on the data from this generative model to reflect
the 𝑈𝑌 |=𝑋 property. Interestingly, if at most 𝑋 or 𝑈𝑌 is non-Gaussian, then the causal direction

4There are also hybrid approaches which incorporate some combination of these classes, but we do not treat these separately.
5Other constraints exist, such as Verma constraints [245, 264].
6Examples of flexible conditional independence testing include GAN-based [16, 215] and Kernel based [63, 266] methods.
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A B C D

Fig. 4. The true structural relationship is 𝑌 = 𝑋 + 𝑈𝑌 and 𝑋 = 𝑈𝑋 where 𝑈𝑋 and 𝑈𝑌 are uniform noise
sources. (A) shows the regression line when regressing 𝑌 onto 𝑋 , and (B) shows the corresponding residuals
plotted against 𝑋 . (C) shows the regression line when regressing 𝑋 onto 𝑌 and (D) shows the corresponding
residuals plotted against 𝑌 . Together, these demonstrate that under the assumption of linear functional form
and non-Gaussian noise, the true structural direction is identifiable as the one for which 𝑋 is independent of
the residuals, as indicated in (B). Example adapted from [188].

(i.e. 𝑋 → 𝑌 ) is identifiable [70, 109, 119, 188]. This is illustrated in Figure 4. The true structural
relationship 𝑋 = 𝑈𝑋 and 𝑌 = 𝑋 +𝑈𝑌 is used to generate data, where 𝑈𝑋 and𝑈𝑌 are non-Gaussian
(they are uniformly distributed). In plot A, 𝑌 is regressed onto 𝑋 (aligning with the true structural
directionality), and it can be seen from plot B that the residuals following this regression are
uncorrelated with 𝑋 . Conversely, and as shown in plot C, when 𝑋 is regressed onto 𝑌 (conflicting
with the true structural directionality), it can be seen in plot D that this results in dependence
between the residuals and 𝑌 .

The example given in Figure 4 depicts the non-Gaussian, linear case. Unfortunately, the assump-
tion that (a) the data generating process is linear and (b) that the noise are sufficiently non-Gaussian
to facilitate reliable identifiability may be overly restrictive in practice. The post-non-linear additive
noise model assumes that the data are generated according to the structural equations 𝑋 = 𝑈𝑋

and 𝑌 = 𝑓 (𝑋 ) +𝑈𝑌 where 𝑓 is sufficiently non-linear, and does not assume that either 𝑈𝑌 or 𝑋
are non-Gaussian. Similarly to the linear non-Gaussian case above, the post-non-linear additive
noise model exhibits structural asymmetries that are reflected in the (in)dependence of regression
residuals [70, 102, 188].

3.2.2 Information Geometric Properties. From a causal perspective, the information geometric
approach to identifying structural directionality takes inspiration from the concept of independent
mechanisms. Assuming that the true structural direction is 𝑋 → 𝑌 , the concept of independent
mechanisms holds that 𝑃 (𝑋 ) contains no information about 𝑃 (𝑌 |𝑋 ), and vice versa. A common
illustrative example [188] involves measurements of temperature 𝑌 at weather stations of different
altitudes𝑋 . Regardless of the distribution of weather station altitudes 𝑃 (𝑋 ), the mechanisms linking
altitude to temperature (e.g. the law determining the relationship between the temperature and
pressure of a gas) exist independently, and changing the temperature around a weather station
does not increase its altitude.
Numerically, this scenario may be easily demonstrated by considering the inverse transform

sampling method for transforming a uniform distribution 𝑃 (𝑋 ) into a target distribution 𝑃 (𝑌 )
using the inverse cumulative distribution function. The uniform distribution is clearly independent
of the function being used to transform it, but this independence does not hold for the transformed
distribution. More generally, if 𝑌 = 𝑓 (𝑋 ), the independence of mechanisms implies with high
likelihood that 𝑃𝑋 will be independent of the mechanism 𝑓 . The corollary is that there exists
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do(A=a)
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CA I

Original DAG Structural/Hard Intervention Soft/Parametric Intervention

Fig. 5. Showing the differences between a hard/structural intervention (middle) and a soft/parametric
intervention (right) on the original DAG (left). It can been that the parametric intervention preserves structural
relationships. Adapted from [50, p.986].
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B

C A

B

C

do(B=b)

A

B

C

do(B=b)

CPDAG Intervening on B
when A -> B

Intervening on B
when A <- B

Fig. 6. Starting with the CPDAG on the left, where the structural direction between vertices A and B is
unknown, intervening on B allows us to orient this edge. In the middle, the edge from A to B is removed
following intervention on B (this is illustrated with the slash). On the right, an intervention on B does not
remove the edge from B to A, and the effect of the intervention flows to A.

dependence between 𝑃𝑌 and 𝑓 −1 [114]. Assuming a structural direction 𝑋 → 𝑌 via function 𝑓 , the
inverse function 𝑓 −1 satisfies cov[log 𝑓 −1, 𝑝𝑌 ] ≥ 0 [114, 117, 188].

It is worth noting various limitations to this approach, particularly with respect to its application
to causal discovery in real-world systems. Firstly, it assumes that the mechanism 𝑓 is deterministic.
Secondly, it assumes that 𝑓 is sufficiently non-linear that it may be used to identify dependence.
Thirdly, real-world systems may (in addition to having non-deterministic mechanisms) demonstrate
adaptation between cause and effect, such that 𝑃𝑋 is no longer independent of 𝑓 .

3.3 Interventions and Adjustment Sets
If interventional data are available, we are able to reduce the number of graphs in our MEC.
An intervention can be denoted using Pearl’s do operator [183] such that, "for each realization
of 𝑥 of 𝑋 , 𝑃 (𝑦 |𝑑𝑜 (𝑥)) gives the probability of 𝑌 = 𝑦 induced by deleting from the model [𝑥𝑖 =

𝑓𝑖 (𝑝𝑎𝑖 , 𝑢𝑖 ), 𝑖 = 1..., 𝑛,] all equations corresponding to variables in 𝑋 and substituting 𝑋 = 𝑥 in the
remaining equations." Such interventions can be hard/perfect/structural/atomic/deterministic, or
soft/imperfect/parametric, depending on whether a variable is set to a specific value, or whether
the variable and its relationship to its neighbours is modified in some way (e.g., by changing
the noise distribution 𝑢). Graphically, a hard intervention can be represented by removing all
incoming arrows (from parents) to a vertex, and setting that vertex to the value 𝑥 [188, p.88-91].
For a structural equation model 𝑋 = 𝑈𝑋 , 𝑌 = 𝑓 (𝑋 ) +𝑈𝑌 and 𝑍 = 𝑔(𝑋 ) +ℎ(𝑌 ) +𝑈𝑍 , an intervention
𝑌 = 4 would entail 𝑋 = 𝑈𝑋 (unmodified), 𝑌 = 4 (modified), and 𝑍 = 𝑔(𝑋 ) + ℎ(4) +𝑈𝑍 (modified).
Thus it can be seen that only 𝑌 and its descendants have been affected by the intervention, leaving
𝑋 unchanged. In contrast to hard interventions, a parametric intervention preserves the structure
of the intervention itself, introducing an additional vertex and affecting the conditional distribution
of the intervened variable. Parametric interventions also preserve any correlations deriving from
unobserved/hidden confounders [50]. This difference is illustrated in Figure 5.
In order to demonstrate how interventions can be used to narrow the equivalence set (and in

some cases make the true graph identifiable), consider the graphs in Figure 6. Starting with the
CPDAG on the left, where the edge from A to C is undirected because the direction of the edge
cannot be ascertained from conditional independencies alone. Intervening (hard) on B allows us to
orient this edge by comparing the resulting distribution under intervention. If the edge is oriented
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𝐴 → 𝐵 then the intervention has the effect of ‘removing’ this edge. Conversely, if the edge is
oriented 𝐵 → 𝐴 then the intervention does nothing to remove this arrow, and the downstream
variable 𝐴 should change accordingly.

Another way to view interventions from the perspective of independencies is to consider their
formulation in terms of adjustment sets. Following [36, 183, 187]: 𝑝 (𝑦 |𝑑𝑜 (𝑋 = 𝑥)) = 𝑝 (𝑦) if 𝑌 is a
parent of𝑋 (i.e., 𝑌 ∈ 𝑝𝑎𝑋 ). In words, intervening on𝑋 does not change 𝑦 because𝑋 is ‘downstream’
of 𝑌 . Secondly, if 𝑌 ∉ 𝑝𝑎𝑋 , then:

𝑝 (𝑦 |𝑑𝑜 (𝑋 = 𝑥)) =
∑︁
𝑝𝑎𝑋

𝑝 (𝑦 |𝑥, 𝑝𝑎𝑋 )𝑝 (𝑝𝑎𝑋 ) (5)

Here, the marginalized interventional distribution 𝑝 (𝑦 |𝑑𝑜 (𝑋 = 𝑥)) is being computed using
the adjustment set (in this case 𝑝𝑎𝑋 is a valid adjustment set). More generally, the interventional
distribution can be calculated as:

𝑝 (𝑦 |𝑑𝑜 (𝑋 = 𝑥)) =
∑︁
z
𝑝 (𝑦 |𝑥, z)𝑝 (z) (6)

when z is a valid adjustment set for this particular interventional distribution. Note that sets
including mediators and descendants of mediators (where 𝐵 in the graph𝐴→ 𝐵 → 𝐶 is a mediator)
are not valid adjustment sets for finding 𝐶 |𝑑𝑜 (𝐴). See Cinelli et al. (2020) [36] for a "Crash course
in good and bad controls".

For a detailed review of different types of interventions and their implications, readers are directed
to Eberhardt & Scheines (2006) [50]. Suffice to say there are many ways to leverage different types of
intervention, including multiple interventions on different vertices, or single interventions applied
to multiple nodes. Finally, there is work investigating the use of data representing unknown or
uncertain interventions, whereby it is not known which variables have been intervened on [48,
124, 165, 204]. The use of intervention also yields what is known as an Interventional Equivalence
Class (IEC), representing the set of graphs compatible with a given intervention(s).

3.4 Causality Over Time
Consider a graph 𝑋 → 𝑌 for the case where 𝑋 and 𝑌 vary over time. In this scenario, a single
right-arrow is not sufficient to detail whether 𝑋 causes 𝑌 on an intra-timepoint7 basis (i.e, contem-
poraneously), or on an inter-timepoint (i.e., lagged) basis. Indeed, at different points in time, and
over different lags, the direction of causality may switch. In these cases it is common to unroll the
graph over time, such that each instance of variables 𝑋 𝑡 and 𝑌 𝑡 and their structural relationships
over time are modelled explicitly.

There are then two types of causality considered in the context of time series. The most common
(which is generally considered to be the industry standard, particularly in economics) is Granger
causality [78]. If a variable 𝑋 ‘Granger-causes’ 𝑌 , then it means that 𝑌 𝑡 ⊥̸⊥ 𝑋<𝑡 |𝑌<𝑡 [188, pp.207],
where < 𝑡 indicates timepoints previous to 𝑡 . If this is the case, then the predictability of 𝑌 𝑡

will decrease when 𝑋<𝑡 is removed from the model (because 𝑋 contains unique information for
predicting 𝑌 ), when accounting for previous values of 𝑌 .

The first thing to note about Granger causality is that it tends to fail in the presence of contempo-
raneous effects [188, pp.207], owing to difficulties with identifiability. The second, and perhaps more
important aspect of Granger causality, is that it is only applicable if separability holds. Separability
refers to the independence of the variables in the absence of causal interactions. Unfortunately,
this is rarely the case in dynamic systems, where the current state of a variable may be heavily

7It is generally accepted that an effect has to follow the cause in time, thereby precluding contemporaneous effects. However,
in cases where the sampling rate is too low to capture this delay, it is reasonable to model the effects as instantaneous.
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determined by the past of another (e.g., consider a predator-prey model, where both population
levels are always functions of each other).

This failure of Granger causality was noted by Granger himself, and has motivated the develop-
ment and application of dynamic-causality; in particular, methods deriving from Sugihara et al.‘s
Convergent Cross Mapping methods [226, 259]. The methods operate using time delayed embed-
dings or shadow manifolds. These shadow manifolds are constructed by concatenating time-lagged
versions of the original time series. This process has been shown according to Takens’ theorem
[1], to be sufficient in recovering the dynamics of the full system even if only one, or a limited
number, of observational variables are used. Dynamic or CCM-causality has shown great promise
in applications to ecosystems and genetics [226, 259]. The general idea behind these methods is
to exploit asymmetries that exist between the compactness of neighbourhoods of points in the
shadow manifolds. If 𝑋 → 𝑌 in a CCM-causal sense, then points which are tightly clustered in the
‘effect shadow manifold’ of 𝑌 should also be tightly clustered in the ‘cause shadow manifold’ of 𝑋 .
This characteristic does not hold in the reverse direction (nor if there is no causal interaction in
either direction), and this asymmetry enables us to identify causal interactions and directionality.

3.5 Evaluation Metrics
There are a number of common metrics used for evaluating the performance of causal discovery
algorithms. The metrics given below are those used to evaluate the success of edge discovery.
Other score metrics can be used to measure model fit (such as the log likelihood or the Bayesian
Information Criterion). For a more detailed discussion on structural discovery metrics, readers are
directed to work by de Jongh (2009) [44].

True Positive Rate (TPR) [94, p.383]: Assuming the probability of an edge 𝑝 (𝑎𝑖 𝑗 ) can be
thresholded by 𝑡 ∈ (0, 1), TPR is defined as TPR𝑡 = |{(𝑖, 𝑗) : 𝑝 (𝑎𝑖 𝑗 ) ≥ 𝑡} ∩ S|/|S| where S is the set
of ground truth edges (i.e., {(𝑖, 𝑗) : 𝑎∗𝑖 𝑗 = 1}).
False Positive Rate (FPR) [94, p.383]: Assuming the probability of an edge 𝑝 (𝑎𝑖 𝑗 ) can be

thresholded by 𝑡 ∈ (0, 1), FPR is defined as FPR𝑡 = |{(𝑖, 𝑗) : 𝑝 (𝑎𝑖 𝑗 ) ≥ 𝑡} ∩ Ŝ|/|Ŝ| where Ŝ is the set
of ground truth missing edges (i.e., {(𝑖, 𝑗) : 𝑎∗𝑖 𝑗 = 0}).
Area Over Curve (AOC) [94, p.383]: Simply (1 − Area Under Curve (AUC) for the AUC of
(𝐹𝑃𝑅𝑡 ,𝑇𝑃𝑅𝑡 ) where the threshold 𝑡 is varied between 0 and 1. Either the AUC or AOC can be used
as a structure discovery performance metric.

Structural Hamming Distance (SHD): Is the number of required changes to the graph for it
to match the ground truth. It is the sum of missing edges, extra edges, and incorrect edges [44].

Structural Interventional Distance (SID) [187]: Is a count of the number of vertex pairs (𝑖, 𝑗)
for which the intervention 𝑝 (𝑥 𝑗 |𝑑𝑜 (𝑋𝑖 = 𝑥)) would be incorrect if the estimated graph (as opposed
to the ground-truth graph) were used for the associated adjustment set. It is therefore particularly
well suited for causal inference tasks [139, p.7].

4 COMBINATORIC/SEARCH BASED APPROACHES
The number of possible DAGs increases super-exponentially with the number of variables [201].
As noted by Peters et al. (2017) [188], the number of possible DAGs for 10 variables is > 4 × 1018.
As such, the search problem is NP-hard [33], and this will later motivate the use of continuous
optimization approaches to graph learning.

Table 1 presents a non-exhaustive list of methods which do not use continuous optimization. In
other words, they include primarily combinatoric/search-based approaches to structure discovery.
The table presents the type of approach used: constraint-based, score-based, asymmetry-based,
hybrid, and sampling-based (which measure belief in a proposed graph structure by sampling from



12 Vowels et al.

Method Year Type Suff. Faith. Acycl. Interv. Output

PC [223] 1993 constraint yes yes yes no CPDAG
CCD [196] 1996 constraint yes yes both no PAG
FCI [223] 2000 constraint no yes yes no PAG
TPDA [31] 2002 constraint yes yes yes no CPDAG
CPC [190] 2006 constraint yes relaxed yes no CPDAG
KCL [227] 2007 constraint yes yes yes no CPDAG
ION [234] 2008 constraint no yes yes no PAG
IDA [153] 2009 constraint yes yes yes yes DAG
cSAT+ [237] 2010 constraint no yes yes no PCG
KCI-test [266] 2012 constraint yes yes yes no CPDAG
RFCI [38] 2012 constraint no yes yes no PAG
CHC [65] 2012 constraint yes yes yes no PDAG
SAT [108] 2013 constraint no yes no yes DG
Parallel-PC [141] 2014 constraint yes yes yes no CPDAG
RPC [89] 2013 constraint yes yes yes no CPDAG
PC-stable [37] 2014 constraint both yes both no CPDAG
COmbINE [236] 2015 constraint no yes yes yes summary SMCMs
backshift [204] 2015 - no no no yes DG
IGSP [256] 2018 constraint yes relaxed yes yes I-MEC
𝜎-CG [57] 2018 constraint no yes no yes 𝜎-connection graphs
CCI [225] 2018 constraint no yes no no MAAG
FCI-soft [132] 2019 constraint no relaxed yes yes I-MEC
IBSSI [32] 2020 constraint no yes yes yes DAG
CD-NOD [106] 2020 constraint no yes both yes —–
psi-FCI [112] 2020 constraint no relaxed yes yes Psi-EC
LCDI [264] 2020 constraint no yes yes yes Pattern
EG [53] 2009 score yes yes yes no BT-DAG
TWILP [182] 2014 score yes yes yes no BT-DAG
K2 [39] 1992 score no yes yes no CPDAG
LB-MDL [140] 1994 score yes yes yes no DAG
HGC [93] 1995 score yes yes yes no CPDAG
GES [34] 2002 score yes yes yes no CPDAG
OS [231] 2005 score yes yes yes no DAG
HGL [92] 2005 score yes yes yes yes CPDAG
Meinshausen [159] 2006 score yes - no no UG
Graphical Lasso [60] 2008 score yes - no no UG
BC [9] 2008 score yes - no no UG
TC [185] 2008 score yes yes yes no CPDAG
HG [91] 2008 score yes yes yes yes DAG
Adaptive Lasso [217] 2010 score yes yes yes no DAG
GIES [90] 2012 score yes yes yes yes PDAG
CD [62] 2013 score yes yes yes yes DAG
GBN learner [239] 2013 score yes no yes no CPDAG
GES-mod [4] 2013 score yes yes yes no CPDAG
Pen-PC [87] 2015 score yes yes yes no CPDAG
Scalable GBN [6] 2015 score yes no yes no DAG
K-A* [208] 2016 score yes yes yes no DAG
NS-DIST [88] 2016 score yes no yes yes DAG
MIP-GD [181] 2017 score yes yes yes no CPDAG
CD2 [85] 2018 score yes yes yes yes DAG
SP [192] 2018 score yes relaxed yes no CPDAG
VAR [261] 2018 score yes yes both no DG
GSF [105] 2018 score yes yes yes no CPDAG
bQCD [229] 2020 score yes yes yes no Bi
GCL [244] 2020 score no - no no GCLM
GGIM [56] 2020 score yes no no no GGIM
GYKZ [69] 2020 score yes yes both no DG
SLARAC etc. [252] 2020 score Granger - - no Bi
Order-MCMC [61] 2003 sampling yes yes yes no DAG
OG [54] 2008 sampling yes yes yes yes DAG
EE-DAG [269] 2011 sampling yes yes yes yes DAG
ZIPBN [35] 2020 sampling yes no yes no DAG
LiNGAM [216] 2006 asymmetries yes no yes no DAG
LV LiNGAM [103] 2008 asymmetries no yes yes no DAG
non-linear ANM [102] 2008 asymmetries yes yes yes no DAG
CAN [115] 2009 asymmetries no yes yes no Bi/tri
CCM [226] 2012 asymmetries - - no no Bi
IGCI [114] 2012 asymmetries yes yes yes no Bi
KCDC [161] 2018 asymmetries yes yes yes no Bi
MMHC [238] 2006 hybrid yes yes yes no DAG
ARGES [171] 2018 hybrid yes yes yes no CPDAG

Table 1. This table comprises a list of non-continuous optimization based approaches to causal discovery
(i.e., combinatoric, search-based, SAT-solver). Provides indication of assumptions of sufficiency (‘Suff.’),
faithfulness (‘Faith.’), acyclicity (‘Acycl.’), as well as whether the method leverages forms of intervention
(‘Interv.’). ‘Bi’ indicates bivariate cause-effect pairs (possibly multivariate). N.B. If the output is ‘DAG’ this
does not necessarily imply that the method identifies the true DAG.
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a posterior). In addition, the table provides the associated assumptions: Sufficiency (i.e., whether it
assumes there are no hidden variables), Faithfulness (some methods achieve a less severe/relaxed
form of faithfulness); and Acyclicity (some methods can learn feedback loops and cycles). Finally,
the table indicates whether the method leverages interventions, and indicates the method’s output
(CPDAG, PAG, etc.).

5 CONTINUOUS OPTIMIZATION BASED APPROACHES
The primary focus of this survey is to review continuous optimization based methods for structure
discovery. Continuous optimizaion methods are pervasive in the field of deep learning, whereby
highly parameterized networks are optimized using variations on gradient descent [73]. Increased
compute (particularly with the advent of GPUs) make the task of learning from large, high-
dimensional datasets feasible. Recently, there have been an increasing number of methods which
seek to learn structure from data, whilst leveraging the advantages of continuous optimization.
This has resulted in the confluence of black-box deep learning approaches, and structure discovery.
These continuous optimization approaches recast the combinatoric graph-search problem into a
continuous optimization problem (specifically, an Equality Constrained Program) [267]. In Equa-
tion 7, the left hand side represents the traditional approach, which seeks the adjacency matrix A
that minimizes some score function 𝑆 (A), subject to the implied 𝑑-vertex graph G(𝐴) being in the
set of valid DAGs. The right hand side represents a characterization of the continuous optimization
problem which, again, seeks the adjacency matrix A that minimizes some score function 𝑆 (A), but
this time subject to the constraint ℎ(A) = 0. Here, ℎ is the function used to enforce acyclicity in the
inferred graph.

minA∈R𝑑×𝑑 𝑆 (A) minA∈R𝑑×𝑑 𝑆 (A)
subject to G(A) ∈ DAGs subject to ℎ(A) = 0 (7)

The increased popularity of structure discovery in deep learning is not without sound motivation,
with arguments that disentangled, structured, and symbolic representations are key to the next
generation of AI, as well as robust cross-domain performance, transfer learning, and interpretability
[17, 18, 66, 79]. Researchers have noted three primary approaches to learning representations of the
world: (1) distributed, (2) structured and symbolic, and (3) a hybrid of (1) and (2). Most basic neural
networks perform distributed learning and there is no clear separation of high-level semantics..

Conversely, DAGs are highly structured and facilitate causal reasoning. However, such reasoning
is only possible if one already has access to variables which represent high-level semantic concepts,
which is not the case when learning from raw video data, for example. Hence the motivation for
hybrids which can be used to ‘learn’ or infer high-level representations as well as the structured
relations between them. Examples of hybrid approaches include methods such as Recurrent In-
dependent Mechanisms [77], graph networks [12, 13, 209], and a large body of work on scene
understanding [118, 155, 170, 172, 260]. The debate as to how much structural inductive bias /
constraint is required for an algorithm to reason effectively is ongoing [12, 46]. Indeed, finding a
DAG to represent complex phenomena (such as natural language) is non-trivial and potentially
impossible.
In this section we review the recent evolution of continuous optimization based approaches to

structure learning, and Table 2 presents a non-exhaustive list of such methods.

5.1 Cross Map Smoothness (CMS, 2014)
The CMS algorithm [152] is intended to identify causal directionality between time varying variables
in dynamic systems. The method is inspired by convergent cross mapping methods [226, 259]
which operate using time delayed embeddings or shadow manifolds. In order to ascertain whether
two variables 𝑋 and 𝑌 from a time varying dynamical system are causally related, CMS uses a
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radial basis function neural network to map between the shadow embeddings for 𝑋 and 𝑌 . The
asymmetry in the error when mappying from 𝑋 to 𝑌 , compared with the error when mapping from
𝑌 to 𝑋 , is used as a proxy to infer causal directionality. Note that this method is only demonstrated
to work when the input variables are univariate, but may be used multiple times to ascertain the
causal structure of more than two observational variables.

5.2 DAGs with NO TEARS (2018)
The recent (2018) method DAGs with NO TEARS (Non-combinatoric Optimization via Trace
Exponential Augmented lagRangian Structure learning) [267] is generally considered as the first to
recast the combinatoric graph search problem as a continuous optimization problem (see Equation
7). The function ℎ for enforcing acyclicity is derived to be:

ℎ(A) = 𝑡𝑟 (𝑒A⊙A) − 𝑑 = 0 (8)
In practice, ℎ(𝐴) may be small but non-zero, and edges may require some thresholding. One

of the disadvantages of this acyclicity constraint is that the matrix exponential requires O(𝑑3)
computations, and subsequent methods seek to improve on this. The structural model learnt is
linear such that 𝑋 𝑗 = 𝑎𝑇𝑗 X + 𝑈 𝑗 , where 𝑎 𝑗 is the weight in the adjacency matrix corresponding
with the edges into 𝑋 𝑗 , (the noise variables are not assumed to be Gaussian). NO TEARS uses a

Method Year Data Acycl. Interv. Output

CMS [152] 2014 low - no Bi
NO TEARS [267] 2018 low yes no DAG
CGNN [75] 2018 low yes no DAG
Graphite [83] 2019 low/medium no no UG
SAM [122] 2019 low/medium yes no DAG
DAG-GNN [262] 2019 low yes no DAG
GAE [177] 2019 low yes no DAG
NO BEARS [142] 2019 low/medium/high yes no DAG
Meta-Transfer [19] 2019 Bi yes yes Bi
DEAR [214] 2020 high yes no -
CAN [167] 2020 low/medium/high yes no DAG
NO FEARS [251] 2020 low yes no DAG
GOLEM [176] 2020 low yes no DAG
ABIC [20] 2020 low yes no ADMG/PAG
DYNOTEARS [178] 2020 low yes no SVAR
SDI [124] 2020 low yes yes DAG
AEQ [64] 2020 Bi - no direction
RL-BIC [272] 2020 low yes no DAG
CRN [125] 2020 low yes yes DAG
ACD [151] 2020 low Granger no time-series DAG
V-CDN [145] 2020 high Granger no time-series DAG
CASTLE (reg.) [138] 2020 low/medium yes no DAG
GranDAG [139] 2020 low yes no DAG
MaskedNN [175] 2020 low yes no DAG
CausalVAE [257] 2020 high yes yes DAG
CAREFL [126] 2020 low yes no DAG / Bi
Varando [244] 2020 low yes no DAG
NO TEARS+ [268] 2020 low yes no DAG
ICL [250] 2020 low yes no DAG
LEAST [271] 2020 low/medium/high yes no DAG

Table 2. This table comprises a list of continuous optimization based approaches to causal discovery. ‘Data’
indicates the dimensionality of the data the method has been demonstrated to handle. ‘Bi’ indicates bivariate
cause-effect pairs (possibly multivariate), ‘low’ indicates <100 vertices, ‘medium’ indicates >100, and ‘high’
indicates either dimensionality >10,000 or data which are not already projected into a causal/semantic space
(e.g., image data). ‘Acycl.’ indicates whether the method enforces acyclicity, and ‘Interv.’ indicates the use of
interventions during learning. Please consult the main test for further details of each method. N.B. If the
output is ‘DAG’ this is not meant to necessarily imply the method identifies the true DAG.
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least-squares loss with an 𝑙1 penalty to encourage sparsity, and their objective is optimized using
the Augmented Lagrangian method [173] with L-BFGS [28]. As well as synthetic data, NO TEARS
is also evaluated on the proteins and phospholipid dataset by Sachs et al. (2005) [206]. Despite the
fact that the formulated optimization problem does not guarantee an optimal solution, their results
demonstrate close-to-optimal results on the chosen datasets.

5.3 Causal Generative Neural Network (CGNN, 2018)
CGNN [75] combines graph learning with continuous optimization, neural networks, and hill-
climbing or Tabu search. The neural networks are used to learn the functions mapping variables
(e.g. see the SEM breakdown in Figure 1), where the variables themselves are selected according to
the output of a greedy-search algorithm. The motivation for the neural network is that they do not
impose restrictions on the functional form a priori and therefore "let the data speak" [241]. The
networks are trained using the Adam [128] optimizer with a Maximum Mean Discrepancy (MMD)
[80] score function. During training, the edges are directed in order to minimize this discrepancy,
and following training, the graph is adjusted to remove cycles. CGNN incorporates a hill-climbing
search algorithm to optimize the structure of the DAG, and then the network optimization resumes.
This training cycle is repeated to convergence, and each edge has an associated score representing
its contribution to the global fit. They use a thresholding function to regularize the number of
edges in the graph. Finally, their method includes a means to identify possible hidden confounding,
by leveraging the fact that confounding can be modelled as correlations/associations between the
(otherwise) exogenous latent random variables.

5.4 Graphite (2019)
Graphite [83] is a generative neural network model incorporating a graph neural network [209]
encoder, where latent variables are inferred using black-box variational inference [21, 129, 191, 195].
Graphite takes in graphical/network data, and infers a posterior latent distribution over these
data. The network is trained to reconstruct the graph which is parameterized using a symmetric,
weighted adjacency matrix (i.e. the graph is undirected). The method is shown to perform well on
data with as many as 19,717 vertices.

5.5 Structural Agnostic Modeling (SAM, 2019)
SAM [120, 122] is a neural network approach that is intended to address the limitations of CGNN.
These limitations are CGNN’s quadratic complexity (due to the calculation of the MMD), and
the scalability issues that arise due to CGNNs use of a greedy-search. SAM addresses these two
limitations with the use of adversarial training [74], and by making the mechanism which optimizes
the DAG part of end-to-end training. Their score function is a log-likelihood loss with two model
complexity regularizers: One that penalizes the model, on a per-vertex basis, by an amount propor-
tional to the number of vertex parents; and one which acts as neural network parameter/weight
decay. It uses an acyclicity constraint which is similar to the one in NO TEARS [267] to encourage
DAG-ness:

𝑑∑︁
𝑘=1

𝑡𝑟 (𝐴 𝑗 )
𝑘!

= 0 (9)

Here, 𝐴 is what they call a structural gate, which performs the same function as an adjacency
matrix. The neural network parameterization of the structural equation model is 𝑋 𝑗 = 𝐿 𝑗,𝐻+1 ◦
𝜎 ◦ ...𝐿 𝑗,1 ( [a𝑗 ⊙ X,𝑈 𝑗 ]. In words, the stack of 𝐻 neural network layers 𝐿𝐻 and non-linearities 𝜎
for each variable 𝑗 is used as the function over the Hadamard product between the data X and
a binary vector form of the adjacency matrix 𝐴, s.t. 𝑎𝑖, 𝑗 = 1 iff there is an edge 𝑋𝑖 → 𝑋 𝑗 . They
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provide a detailed theoretical analysis of their method, showing how the global training objective
constitues a combination of a structural component (which seeks the CPDAG) and a functional
component (which exploits asymmetries). They assume both faithfulness and sufficiency, and
evaluate on a range of low to medium dimensionality datasets (the highest number of dimensions
is approximately 6000 (DREAM5 [156]).

5.6 DAG Graph Neural Network (DAG-GNN, 2019)
DAG-GNN [262] extends NO TEARS by incorporating neural network functions 𝑓 and black-
box variational inference such that the score function is the Evidence Lower BOund (ELBO)
[21, 129, 191, 195]. The method assumes faithfulness, and infers a latent posterior Z:

Z = 𝑓4 ((I − A𝑇 ) 𝑓3 (X) (10)

where𝐴 is a weighted adjacency matrix, andXmay comprise vector-valued variables. DAG-GNN
recovers the observations with a decoder:

X = 𝑓2 ((I − A𝑇 )−1 𝑓1 (Z)) (11)

Together, Equations 10 and 11 constitute a variational autoencoder [129, 195]. Noting that if 𝑓2 is
invertible, then:

𝑓 −1
2 (X) = A𝑇 𝑓 −1

2 (X) + 𝑓1 (Z) (12)

which is a generalization of the linear SEM model X = A𝑇X + Z. Acyclicity is enforced using a
constraint derived from the one employed in NO TEARS [267] as:

𝑡𝑟 [(I + 𝛼A ⊙ A)𝑑 ] − 𝑑 = 0 (13)

where 𝛼 acts as a hyperparameter on this constraint. This formulation of the acyclicity constraint is
justified on the basis of that it is preferred over a calculation that involves the matrix exponential (as
appears in Equation 8). Similarly to NO TEARS, they also use the augmented Lagriangian approach
to optimization. They evaluate on low-dimensional data such as the proteins and phospholipid
dataset by Sachs et al. (2005) [206].

5.7 Graph AutoEncoder (GAE, 2019)
GAE [177] extends NO TEARS and DAG-GNN formulations for structure learning into a graph
autoencoder model, facilitating non-linear structural relationships and vector-valued variables.
They model structure in the same way as DAG-GNN, and draw a connection to graph convolutional
neural networks [130]:

𝑓 (𝑋 𝑗 ,A) = 𝑓2 (A𝑇 𝑓1 (𝑋 𝑗 )) (14)

where 𝑓1 and 𝑓2 are multilayer perceptrons (MLPs). Similarly to NO TEARS, and DAG-GNN, they
also use the augmented Lagrangian method with Adam [128] for constrained optimization. Their
acyclicity constraint is identical to the one used in NO TEARS (Equation 8). They demonstrate that
GAE performs significantly better than NO TEARS and DAG-GNN, particularly as the number of
vertices in the graph increases, and also highlight that training time is much shorter.

5.8 Meta-Transfer Objectives (2019)
Bengio et al. [19] identify that if the correct causal direction is known, then learning algorithms
adapt faster under distributional shift (i.e. intervention), than they do if it makes the incorrect
assumptions about the direction. This is demonstrated by comparing the adaptation rates, and
formulating a meta-learning objective that accounts for the rates of learning under different
directional assumptions.
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5.9 Scaling Structural Learning with NO BEARS (2019)
The NO BEARSmethod [142] is partly motivated by the computational complexity O(𝑑3) associated
with the matrix exponential in the NO TEARS acyclicity constraint. They reformulate the acyclicity
constraint by using the spectral radius of a matrix. Normally the spectral radius also requires
O(𝑑3) operations, but they present an approximation that takes only O(𝑑2). The spectral radius
is the maximum magnitude of eigenvalues, and the authors show how it forms an upper bound
on the original NO TEARS acyclicity constraint. Rather than using neural networks to increase
the flexibility of the structural functions, they use a polynomial (order 3) regression. NO BEARS is
demonstrated to scale well even on data with as many as 12,800 vertices.

5.10 Disentangled gEnerative cAusal Representation Learning (DEAR 2020)
DEAR [214] combines a Variational AutoEncoder (VAE) [129, 195] with an adversarial loss [74]
in order to infer a latent space with "causal" structure. Strictly, this is not a causal discovery
method, because they assume the ‘super-graph’ is given, and they learn the associated weights and
parameters. The latent space is given supervision in the form of labels for the generative factors.
The latent structure is defined as:

𝑧 = 𝑓 ((I − A𝑇 )−1ℎ(𝜖)) (15)

Here,𝐴 is a weighted adjacency matrix, 𝑓 and ℎ are neural networks, and 𝜖 is noise sampled from
a prior distribution. DEAR is notable for its use of high-dimensional data with semantic labels. It
maps from image data to the structured latent space, where the labels provide a form of supervision.

5.11 Causal Adversarial Network (CAN 2020)
CAN [167] is a Generative Adversarial Network (GAN) [74] that facilitates interventional sampling
from a structural graph (which the authors refer to as a causal graph) at inference time. It comprises
a Label Generation Network, which learns a graph from the dataset labels, and a Conditional Image
Generation Network, which generates the images conditioned on the interventional distribution
specified by the user at inference time. Their generator is a function of an adjacency matrix applied
to the noise vectors as X = 𝐺 ((I − A𝑇 )−1Z) where 𝑋 is a sample from the join distribution, Z is
random noise, 𝐴 is a weighted adjacency matrix, I is the identity matrix, and 𝐺 is the non-linear
generator function. In order to impose acyclicity they leverage an equality constraint [262], such
that acyclicity occurs if:

𝑡𝑟 [(I + 𝛽A ⊙ A)𝑑 ] − 𝑑 = 0 (16)
where 𝑑 is the number of vertices in the graph, ‘𝑡𝑟 ’ is the trace operator, ⊙ is the Hadamard

product, and 𝛽 is a non-zero hyperparameter.
As well as evaluating CAN on CelebA [147] image data (including the generation of interventional

samples), they also evaluate it on the more traditional CHILD [222] and Alarm [15] datasets showing
performance competitive with state-of-the-art.

5.12 DAGs with NO FEARS
NO FEARS [251] revisits and updates aspects of DAG-GNN and NO TEARS. They provide a detailed
analysis of the acyclicity constraint of NO TEARS (see Equation 8) and show that, following the
augmented Lagrangian optimization, it is not guaranteed to converge to a feasible solution of
the intend constraint (i.e., when ℎ(A) = 0). Instead of a constraint that depends on A ⊙ A, they
propose one that depends only on the absolute value |A|, on the basis that there is a connection
with the 𝑙1 penalty and sparsity. Following some modifications to make the absolute value function
differentiable, the authors modify existing algorithms with knowledge derived through theoretic
analysis, and show their proposal to improve all baselines (including combinatoric approaches).
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5.13 Gradient-based Optimization of dag-penalized Likelihood for learning linEar
dag Models (GOLEM, 2020)

Following in a similar vain to other works such as NO BEARS, DAG-GNN, and NO FEARS, GOLEM
[176] examines the acyclicity constraint of NO FEARS. They also note that NO TEARS uses a least-
squares score function, and improve on this by proposing a score function that directly maximizes
the data likelihood. The authors show that in the linear Gaussian case and under mild assumptions
(such as faithfulness), a likelihood-based objective with ‘soft’ sparsity regularization is sufficient
to asymptotically identify a quasi-equivalent (see original paper for definition) DAG and that a
hard acyclicity constraint is not required. Further, in the linear non-Gaussian scenario, they explain
how an acyclicity constraint is not needed in the asymptotic regime, although it may be necessary
with finite samples. Finally, they explain how it is sufficient to have a ‘soft’ acyclicity penalty,
instead of a hard constraint, which greatly reduces the complexity of the optimization problem.
They propose their own objective, including a likelihood based score with an 𝑙1 regularizer and soft
acyclicity constraint, which they optimize using Adam [128]. Some post-processing is undertaken
to threshold edges in order to guarantee acyclicity. The primary distinctions from NO TEARS
are, therefore, (a) the likelihood based score function, and (b) the use of a soft (rather than hard)
aycyclicity penalty.

5.14 Approximate Bayesian Information Criterion for Differentiable Causal Discovery
Under Unmeasured Confounding (ABIC, 2020)

ABIC [20] extends the continuous optimization paradigm to discover various types (ancestral,
arid, bow-free) of ADMGs which account for unmeasured confounding. In the linear SEM case,
unmeasured confounders manifest as correlated errors, which are represented in a second adjacency
matrix. They present three differentiable constraints which can be used to discover a particular
type of ADMG. They use the BIC criterion as the primary objective/score function. The parameters
are optimized using a Residual Iterative Conditional Fitting algorithm [47].

5.15 DYNOTEARS (2020)
DYNOTEARS [178] seeks to discover structure in time series data, which is a topic we have not
covered in Section 2 of this work. By using second order optimization, DYNOTEARS seeks to
learn a Structural Vector AutoRegressive (SVAR) model, which is also a form of dynamic Bayesian
network. This is argued to be important on the basis that temporal dynamics are an essential
part of real-world systems, which cannot be captured using a static graph model. They assume
that variables potentially affect each other both contemporaneously, and in a time-lagged manner.
DYNOTEARS is, therefore, not Granger causal, because it accounts for contemporaneous effects
[188, p.203-208]. They model two adjacency matrices, W and A, for the intra-slice and inter-slice
graph edges, respectively. Because the edges represented in A only go forward in time, only W
needs an acyclicity constraint. They use the same constraint as NO TEARS (see Equation 8, and
incorporate it into an augmented Lagrangian problem which is optimized using L-BFGS-B [270].
Following optimization, and similarly to other methods using acyclicity constraints, they threshold
edges with weights close to 0. DYNOTEARS is evaluated on S&P 500 returns data with 97 vertices,
and on DREAM4 with 100 vertices [157].

5.16 Structural Discovery from Intervention (SDI, 2020)
SDI [124] is a neural network method that assumes faithfulness and sufficiency, and which attempts
to discover structure using data which have been subject to unknown interventions. SDI is restricted
to discrete, categorical variables with no missingness; it assumes the available interventions are
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sparse and only effect a single (possibly unknown) variable; the interventions may be soft; and
there are no compounding interventions (i.e., only one or less interventions occur in the data).

The method is trained in three stages which repeat until convergence. The first stage is concerned
with updating the functional parameters (those which map between vertices). The procedure
involves randomly drawing data samples and graph configurations, and optimizing the functional
parameters using the log-likelihood as a score function. In the second stage the structural parameters
are updated (those which model the edges between vertices), and interventional (unknown) data are
sampled. The variable subject to intervention is predicted using a simple heuristic; namely, that the
variable exhibiting the greatest reduction in log-likelihood is predicted on the basis that it is a poor
fit to the observational distribution. Given a new set of interventional data and sampled graphs,
these graphs can be scored whilst masking the intervened variable. In the third stage, and following
[19], the REINFORCE algorithm [253] is used to update the discrete structural parameters.

They apply an acyclicity constraint which is derived from Equation 8 as:
∑

𝑖≠𝑗 cosh(𝜎 (𝑎𝑖 𝑗 )𝜎 (𝑎 𝑗𝑖 )),
where 𝑎𝑖 𝑗 is the structural parameter linking variable 𝑖 to 𝑗 , and 𝜎 is the sigmoid function. The
method is evaluated on low-dimensional data (𝑑 < 100), and is shown to exceed state-of-the-art on
a number of benchmark datasets.

5.17 AutoEncoder Complexity (AEQ, 2020)
The authors of the AEQ method [64] develop a score function based on autoencoder reconstruction
error for discovering the directionality of vector valued cause-effect pairs. Their key result is that
the SEM 𝑌 = 𝑔(𝑓 (𝑋 ),𝑈 ) only holds in one direction if 𝑋 and 𝑌 are vectors and 𝑔 and 𝑓 are neural
network functions. They extend this result to univariate 𝑋 by creating multivariate versions of the
variable based on a sorted concatenation of slices of the original. The complexity of this multivariate
surrogate is then measured using an autoencoder reconstruction error (they use an 𝑙2 loss). For a
cause-effect pair, the variable with the higher loss is likely to be the cause. In the case where the
original variables are multivariate, they propose an adversarial conditional independence method
that discriminates between joint distributions and the product of the marginals (resembling a
mutual information proxy).

5.18 Causal Discovery with Reinforcement Learning (RL-BIC, 2020)
The authors of RL-BIC [272] take a reinforcement learning approach to causal discovery. They
generate directed graphs using an encoder-decoder neural network model, which forms the ‘actor’.
The output of the encoder-decoder is the proposed graph, which is scored using the BIC in order
to generate a reward signal. A critic is used to update the proposed graphs and therefore also to
drive the optimization of the neural network parameters. They assume an additive noise model
𝑋𝑖 = 𝑓𝑖 (𝑝𝑎𝑖 ) +𝑈𝑖 as well as faithfulness and causal sufficiency. Their output graph is represented
using a binary adjacency matrix. They mask out (𝑖, 𝑖) edges to prevent self-loops, and incorporate
an adapted form of the NO TEARS acyclicity penalty:

ℎ(A) = 𝑡𝑟 (𝑒A) − 𝑑 = 0 (17)

In order to guarantee acyclicity (in the event that ℎ(A) is small but non-zero), they augment it
with a hard indicator function penalty that acts on whether the graph is a valid DAG or not. All
generated graphs are stored during training, and the one with the best score is chosen, and this
graph is finally pruned to reduce false discovery. The method is trained using poly-gradient method
and REINFORCE [253] with Adam [128], and evaluated on relatively small graphs (≤ 30 nodes).
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5.19 Meta-Learning Neural Causal Representations (CRN, 2020)
Ke et al. (2020) [125] propose a meta-learning neural network method that leverages continuous
representations of graphs and which assumes causal sufficiency. Training is split into episodes
where, for each episode, a graph is proposed and used to generate data for the duration of the episode.
The episode is further split into 𝑘 time points, and for each time point a random intervention is
undertaken on the graph and data is generated. The model is then asked to predict the outcome of
the intervention, and thereby ends up ‘learning’ the causal relationships between the variables in
the graph. They also propose a Causal Relational Network (CRN), which accumulates information
about the interventions and graphs over time (similar to an LSTM [98]). They use a graph decoder
(the gradients from which are not backpropagated to the rest of the network) in order to validate
the graph’s continuous representation against the ground truth graph. It is shown that CRNs learn
new causal models quickly and efficiently. Interestingly, there is no discussion about (a)cyclicity,
but nonetheless their intention is to learn DAGs.

5.20 Amortized Causal Discovery (ACD, 2020)
ACD [151] is a Granger-causality non-linear time-series method which leverages black-box vari-
ational inference [21, 129, 191, 195] to infer a latent posterior graph. Granger causality assumes
there are no contemporaneous effects [188, p.203-208]. The method is demonstrated to perform
well under hidden confounding (and so does not assume causal sufficiency).

ACD learns from samples with different causal relationships but shared dynamics. This is
motivated using an example from neuroscience. They use the encoder to infer the causal graph
from a particular sample, and a decoder which models the dynamics and takes past samples and
the inferred graph in order to predict the future. Specifically, for sample X𝑠 with graph encoder
𝑓 and decoder dynamics model 𝑔, the future is predicted as X𝑡+1

𝑠 = 𝑔(X≤𝑡𝑠 , 𝑓 (X𝑠 )). The graph is
inferred from the entire sample, and the dynamics model 𝑔 is used to predict the future given the
inferred graph and a portion of the past.

5.21 Causal Discovery from Video (V-CDN, 2020)
The authors of V-CDN [145] use unsupervised key-point detection on video data in order to build
a causal representation of these points. It is a Granger-causal non-linear time-series method which
leverages black-box variational inference [21, 129, 191, 195] and deep neural networks to infer a
latent graph which explains the structural relationships between the deteceted keypoints. They
integrate a dynamics module to facilitate future prediction.

5.22 Causal Structure Learning (CASTLE, 2020)
The authors of CASTLE [138] propose causal discovery as an auxiliary task which helps to regularize
a supervised predictive model. The motivation is that, by identifying key causal factors, the model
avoids overfitting to potential confounders which hurt model robustness and generalizability.
Specifically, a neural network model attempts to identify the DAG that explains the structural
relationships between the observed variables, and this task is built into an autoencoder [135]
framework. Their structural model is non-parametric, following the form 𝑋𝑖 = 𝑓𝑖 (𝑝𝑎𝑖 ,𝑈𝑖 ) and using
an acyclicity constraint:

ℎ(A) = (𝑡𝑟 (𝑒A⊙A) − 𝑑 − 1)2 (18)

which, they explain, also forces the autoencoder to reconstruct only the input variables which have
neighbours.
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5.23 Gradient Based Neural DAG Learning (GranDAG, 2020)
In a similar vain to other methods, GranDAG [139] seeks to expand upon NO TEARS in order
to deal with non-linear relationships through the use of neural networks. They follow the non-
linear additive noise structural model of the form 𝑋 𝑗 = 𝑓𝑗 (𝑝𝑎 𝑗 ) + 𝑈 𝑗 , where each function 𝑓𝑗
is parameterized as a fully-connected neural network. In order to maintain an independence of
mechanisms which corresponds with the independence implied by an adjacency matrix, they
formulate neural network paths and a connectivity matrix, resembling previous work by Germain et
al. (2015) [68]. The connectivity matrix C𝑗 is essentially the matrix product of all neural network
weights in a single neural network (i.e., parameterizing one 𝑓𝑗 ). This product results in C𝑗 ∈ R𝑚×𝑑
where𝑚 is the number of parameters needed to specify a chosen distribution for𝑋 𝑗 (e.g., a Gaussian
has two parameters), and 𝑑 is the number of variables. If C𝑗,𝑘𝑖 = 0 then the input 𝑖 is independent of
output 𝑘 for variable𝑋 𝑗 . Note that 𝑓𝑗 takes as input𝑋−𝑗 (where the variable of interest 𝑗 is masked to
zero). The connectivity matrix is then used to define their weighted adjacency matrix, such that the
adjacency matrix A ∈ R𝑑×𝑑 depends on all neural network weights from all neural networks. They
define the weighted adjacency matrix and substitute it into the NO TEARS acyclicity constraint as:

ℎ(A) = 𝑡𝑟 (𝑒A) − 𝑑 = 0 (19)

For learning they employ the augmented Lagrangian formulation, using a log-likelihood score
function, and threshold the resulting edges for ℎ(A)𝑖 𝑗) close to zero. They demonstrate that their
continuous optimization based approach exceeds the performance of combinatoric approaches
such as PC [223], as well as other continuous optimization based approaches e.g. NO TEARS and
DAG-GNN.

5.24 Masked Gradient Based Structure Learning (MaskedNN, 2020)
The researchers behind [175] attempt to improve on NO TEARS [267] using neural networks. They
assume an additive noise SEM of the form 𝑋 𝑗 = 𝑓𝑗 (𝑝𝑎 𝑗 ) +𝑈 𝑗 , and explain how their method can
be directly extended from handling scalar variables to vector valued variables. They provide a
discussion on identifiability (something which a number of methods in both the combinatoric and
continuous optimization literature tend to omit). They provide an overview of the gradual evolution
from NO TEARS (which assumes linear SEMs), via DAG-GNN [262], GAE [177] and GraNDAG
[139] (which handle non-linear SEMs), but highlight that these methods do not provide an in depth
discussion about identifiability. They also highlight that the use of non-linear transformations on
the adjacency matrices in DAG-GNN and GAE may affect their causal interpretability.
MaskedNN uses a binary adjacency matrix A (rather than weighted), which is integrated into

their SEM as:𝑋 𝑗 = ℎ 𝑗 (A𝑗 ⊙X) +𝑈 𝑗 and refer to this as an Augmented SEM (ASEM). Their discussion
on identifiability states that their method can learn a Super-graph of the true graph, and further
utilize thresholding and Causal Additive Model [26] based pruning to remove spurious edges under
mild conditions. They leverage the Gumbel-softmax trick [113, 154] to incorporate discrete learning
(in view of the binary adjacency matrix) into an augmented Lagrangian 1st order continuous
optimization based approach with an Adam optimizer [128]).

5.25 Causal Variational AutoEncoder (CausalVAE, 2020)
The creators of CausalVAE [257] argue that whilst many disentangled representation learning
methods assume independence between latent factors [97, 137, 148], most latent factors behind real-
world phenomena exhibit causal dependencies. They propose the use of a Variational AutoEncoder
[129, 195]. The latent space of a VAE is usually parameterized by a set of exogeneous factors
(often modelled as a multivariate, isotropic Gaussian). CausalVAE integrates a Causal Layer which
transforms these exogenous latent factors into endogenous factors which reflect the causal semantics
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of the data. They assume a linear SEM following the form Z = A𝑇Z + U where Z are the inferred
latent factors following the application of the adjacency matrix A. They integrate supervision in
the form of semantic labels Y to condition the posterior 𝑝 (Z|Y), which forces identifiability.
These factors (which now reflect semantic quantities according to the provided supervision)

are then passed to a masking layer, similar to the one used in MaskedNN. They then apply 𝑍 𝑗 =

𝑔 𝑗 (A𝑗 ⊙Z)+𝑈 𝑗 where𝑔 are nonlinear and invertible functions.A𝑗 ⊙Z yields a vector only containing
parental information, because the adjacency matrix effectively masks non-parents. The authors
explain how this masking layer facilitates interventional queries. In order to learn the causal
structure, they incorporate the structural inductive prior into the supervised loss function:

𝑙𝑦 = E𝑞 | |Y − 𝜎 (A𝑇Y) | |22 (20)

where𝑞 is the approx posterior distribution. They incorporate theNOTEARS acyclicity constraint:

ℎ(A) = 𝑡𝑟 ((I + A ⊙ A)𝑑 ) − 𝑑 = 0 (21)
The method is evaluated on the CelebA [147] dataset, as well as a synthetic data of a pendulum

casting a shadow from a light. The second dataset is used to demonstrate the interventions - they
intervene (for example) on the position of the light in order to demonstrate the independence of
the position of the pendulum as well as the dependence with the shadow.

5.26 Causal AutoRegressive Flows (CAREFL, 2020)
In CAREFL [126], the authors combine causal discovery with the deep learning framework known
as normalizing flows [131, 194]. Normalizing flows provide a means to construct generative models
which have the capacity to model complex densities using invertible transformations of a basic
and tractable density. They enable the exact computation of the log-likelihood (which constitute
their learning objective) via the use of the change of variables formula and inverse log Jacobian
determinant. Specifically, they use autoregressive flows, which are a form of normalizing flow for
which the transformations are affine and have simple, lower-triangular Jacobians [127, 158].

The authors consider an SEM in terms of a causal ordering, whereby, according to the SEM/DAG,
there exists a permutation of the vertices that corresponds to the order of specified dependencies.
For example, a parent vertex precedes a child vertex in the causal ordering. The generic additive
noise SEM 𝑋 𝑗 = 𝑓𝑗 (𝑝𝑎 𝑗 ) +𝑈 𝑗 can be written in terms of a causal ordering 𝜋 as 𝑋 𝑗 = 𝑓𝑗 (X<𝜋 ( 𝑗) ) +𝑈 𝑗

(which is assumed for CAREFL), where 𝑋<𝜋 ( 𝑗) represents variables that precede 𝑋 𝑗 in the causal
order (including its parents). This latter form is shown to bear resemblance to the autoregressive
flow model with a few constraints. The CAREFL method is shown to be flexible enough to answer
both counterfactual and interventional queries. As well as outputting a DAG, the method can also
be used to judge causal direction by using the log-likelihood to score different directions.

5.27 DAGs without Imposing Acyclicity (NODAG, 2020)
Varando (2020) [244] proposes a proximal gradient [179] optimization objective that yields a linear
SEM and corresponding DAG without requiring an acyclicity constraint. The method derives the
novel objective by framing the learning problem in terms of sparse matrix factorization, and the
resulting method NODAG is shown to be both effective and efficient.

5.28 NO TEARS+ (2020)
A number of the same authors from NO TEARS revisit their original work and update it. We refer
to this later work as NO TEARS+ [268], which seeks to extend NO TEARS acyclicity constraint
to handle nonparametric, general models of the form 𝑔 𝑗 (𝑓𝑗 (𝑋 )) (which subsumes additive noise
models, linear models, and generalized linear models). This model does not utilize an adjacency
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matrix, and thus they frame acyclicity in terms of partial derivatives (an idea they attribute to
Rosasco et al. (2013) [202]) such that [W(𝑓 )]𝑘 𝑗 := | |𝜕𝑘 𝑓𝑗 | |2. This states that the dependency structure
between variable 𝑘 and the function 𝑓𝑗 (which is described by the DAG represented in matrixW) is
the 𝑙2 norm of the partial derivative of 𝑓𝑗 with respect to𝑋𝑘 . They integrate a multi-layer perceptron
into their derived framework (as well as a number of other variations) and demonstrate it’s effective
performance and efficiency.

5.29 Imputated Causal Learning (ICL, 2020)
The authors of ICL [250] focus on the problem of structure discovery under the missing-data
setting, and provide definitions and examples of three types of missingness: Missing At Random
(MAR), Missing Completely At Random (MCAR), and Missing Not At Random (MNAR). They
propose the use of Generative Adversarial Networks (GANs) [74] and Variational AutoEncoders
(VAEs) [129, 195]. ICL takes incomplete data and simultaneously imputes the missing data using
the GAN, in order to match the generated distribution to the empirical distribution. The task of the
discriminator in the GAN is to differentiate between observed versus generated data. The skeleton
graph is estimated using a method following DAG-GNN [262]. Following this, the edges in the
skeleton are oriented following a method proposed by Cai et al. (2019) [29] which is based on the
additive noise model for causal direction identification.

Method Keywords & Software
causaleffect [233] general causality, R
daggity [230] general causality, R
dosearch [232] causal effect identification, R
Causal Discovery Toolbox [121] causal discovery, Python
pcalg [123] causal discovery, R
bnlearn [211] causal discovery, R
rEDM [180] dynamic modeling and convergent cross mapping, R
DoWhy [213] general causality, Python
CausalImpact [25] intervention, time series, R
causal-cmd [254] general causality, Python (py-causal) & JAVA + CLI

Table 3. This table comprises a list of Python and R packages for general causal inference and structure
discovery. CLI = command line interface

5.30 Scalable Learning for Bayesian Networks (LEAST, 2020)
The authors of LEAST [271] propose a new acyclicity constraint, which improves upon the O(𝑑3)
cost of NO TEARS [267]. To do this, they first consider:

ℎ(S) = 𝑡𝑟 (𝑒S) − 𝑑 = 0 (22)

to be the NO TEARS constraint, where S = A ⊙ A. This was subsequently altered by [262] to:

𝑔(S) = 𝑡𝑟 ((I + S)𝑑 ) − 𝑑 = 𝑡𝑟 (
𝑑∑︁

𝑘=1

𝑑

𝑘
S𝑘 ) = 0 (23)

on the basis that 𝑒S =
∑inf

𝑖=0
S𝑘
𝑘! , where 𝑘 is the length of a cycle. The authors of LEAST argue that

both of these have drawbacks relating to O(𝑑3) complexity, as well as storage of 𝑒𝑆 . They note that
NO BEARS [142] framed the problem in terms of a spectral radius (the absolute value of the largest
Eigenvalue of 𝑆). However, this also requires O(𝑑3) computation, so they derive an upper bound 𝛿
on this spectral radius as:
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𝛿 (𝑘) =
𝑑∑︁
𝑖=1

𝑏 (𝑘) [𝑖] where

𝑏 (𝑘) = (𝑟 (S(𝑘) ))𝛼 ⊙ (𝑐 (S(𝑘) ))1−𝛼 and

S(𝑘+1) = (𝐷 (𝑘) )−1S(𝑘)𝐷 (𝑘) and

𝐷 (𝑘) = Diag(𝑏 (𝑘) )

(24)

Combining a computable form for this upper bound with the least squares objective and 𝑙1
regularization, they show that this new objective is nearer to O(𝑑), and trains between 5 and 15
times faster than NO TEARS. Note that edge thresholding is still required. They demonstrate the
benefits of this speedup by evaluating on both small graphs, as well as graphs with as many as
160,000 vertices.

Dataset Vertices Notes

Multi-body Interaction [145] - up to 5 moving balls with physical interactions/relations
Fabric deformation [145] - applying forces to different fabrics
Cause-effect pairs [229] 2 bivariate distributions
Cause-effect pairs [162] 2 bivariate distributions
Cause-effect pairs (Tuebingen) [164, 166] 2 bivariate distributions
SynTReN [240] user specified synthetic gene expression data
Sachs [206] 11 proteins and phospholipids in human cells
Scale-Free Graphs [10] user specified preferential attachment graph generation law
Erdos-Rényi Graphs (e.g. [139]) user specified adds edges with probability 𝑝 = 2𝑒

𝑑2−𝑑
Linear, GP Add, GP Mix, Sigmoid Add and Sigmoid Mix - mixed graph data
CausalWorld [2] - comprehensive robotics dataset
MPI3D [71] - visual disentanglement dataset
Pendulum-light-shadow [257] - image data
Phase coupled oscillator [7] - physical relations
NetSim [220] user specified fMRI data simulation
Temperature [151]
BnLearn [211] - Repository
DREAM series [156, 157] up to 6000 simulated and in-vivo gene regulation networks
Causality 4 Climate [205] - climate change time series competition data
Archaeology [105] 8 archaeology data
S&P500 500 time series / stock returns

Table 4. This table comprises a list of datasets that have been used for testing structure discovery methods.

6 SUMMARY AND DISCUSSION
We have attempted to present the relevant background, definitions, assumptions, approaches to
causal discovery, common evaluation metrics, as well as providing a brief review of combinatoric
methods, and a detailed review of continuous optimization based methods. In terms of additional
resources, a range of software packages exist for undertaking causal inference and structure
discovery and we have provided a list in Table 3 for convenience. Also, in Table 4 we provide a list
of datasets used for causal discovery. Note that not all of these datasets are readily available. Finally,
we encourage readers to explore various additional references and commentaries. These include:
A discussion of the relevance of causality to machine learning [72, 174, 210]; Commentaries on
the nature of causality [143, 160]; alternative reviews on causal inference and causal discovery
[70, 86, 94, 224, 258]; reviews with a focus on time-series causal inference and discovery [52];
frameworks for dynamical SCMs with ODEs [163, 186]; guides on the foundations for causal
discovery [49]; some example applications [5, 146, 149, 207, 272]; textbooks on causal inference
and causal discovery [183, 188, 223].

6.1 Opportunities and Future Directions
One of the main advantages to combinatoric approaches to structure discovery relates to the
provision of guarantees for identifying the true graph, or at least the true equivalence class. This
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advantage comes at a significant cost, however, because such approaches are limited to low-
dimensional problems (or low-cardinality graphs) due to the super-exponential search space. One
might expect, then, that even though the continuous optimization approaches are confronted with a
non-trivial, non-convex solution space, they might at least scale to larger problems. Unfortunately,
and as can be seen from Table 2, most continuous optimization approaches have only been evaluated
on low-dimensional problems. This seems to be due to the fact that the most common acyclicity
constraint, namely the one in Equation 8 from NO TEARS [267], contains a term that requires O(𝑑3)
computations. This has motivated the development of higher-efficiency acyclicity constraints for
continuous optimization approaches to structure discovery, such as the one in LEAST [271]. One
further way to alleviate the issues when confronted with high-dimensional problems is to encode
the data into a lower-dimensional representation. This was undertaken in CausalVAE [257], who
applied the NO TEARS constraint to a graph operating in low-dimensional representation space.
Whilst this approach works well for non-semantic data (such as pixel data from images), it might
not be useful in situations whereby the data are both high-dimensional and semantic (as with gene
regulation data in the DREAM5 dataset [156]). In the latter case, encoding semantic data into a
new subspace may or may not be meaningful, and will likely depend on the domain of application.

In terms of what we consider to present the most opportunity for future work, we note that there
are relatively few continuous optimization approaches which seek to learn structured, semantic
representations from non-semantic, high-dimensional data such as video or image data (exceptions
include CausalVAE [257] and DEAR [214], and related works on scene understanding include
[14, 27, 51, 55]). Interestingly, the field of reinforcement learning, which involves the interaction of
learning agents with each other and their environment, has been relatively slow on the uptake
of causal perspectives [8, 43]. Ashton (2020) [8] even notes that one of the seminal texts on
reinforcement learning [228] makes no explicit reference to causality throughout the entire text. As
such, the application of causal discovery to reinforcement learning presents significant opportunity.8
Finally, whilst therewere numerous combinatoricmethodswhich are designed to handle unobserved
confounding and/or cyclicity (e.g., CCD [196], backshift [204], CCI [225]), there are relatively
few such continuous optimization approaches. Given the complexity of time-varying real-world
phenomena and the potential for cycles, we note the opportunity to develop continuous optimization
methods which can operate in a broader class of scenarios.

6.2 The Causal Leap
It was mentioned in Section 1, that a causal perspective is crucial to the empirical sciences as well
as for improving machine learning methods. More fundamentally, as humans we are interested
in how to reason about and interact in a world full of causal interactions. In general, the pursuit
of causality is essential to understanding the world and our universe. However, it is fraught with
difficulty, and below we finish with a discussion on some of the criticisms and warnings relating to
this otherwise laudable pursuit.
We now take the time to discuss how structure discovery methods take us from a structural

association (albeit, an association which may exhibit directional asymmetry) to that of a causal
association. What is there to suggest that learning or identifying such a graphical or structural
model is equivalent to learning or identifying causes and generative structure in reality? In order
to interpret graphical models causally, the the Causal Markov Condition (CMC) [223] is often
assumed. However, in our view (and see also [58]) the CMC simply represents an uninformative re-
branding of the regular Markov condition (which describes the conditional independence properties
of the graph), with the additional and rather audacious interpretation of the arrows as directed

8Some exceptions include [5, 40, 43, 95, 169, 193, 203, 221, 263, 265].
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causal dependencies. As Dawid (2008) [42, p.83] argues, "there is no reason to believe [the causal
implications of the CMC] hold in complete generality". It should be clear that the conditional
independence properties of DAGs play a foundational rôle in causal discovery. However, as Dawid
(2008) states in his work Beware of the DAG!: "...for conditional independence the arrows are
nothing but incidental construction features supporting the 𝑑-separation semantics." It may be
interesting, then, to observe just how many structure discovery methods, particularly those which
rely exclusively on conditional independencies (rather than, say, interventional data and rigorous
identifiability), uncritically label themselves as causal...

The use of structural equations gets us somewhat closer to where we want to be when seeking
to represent causality, than do graphical models alone. This is because the structural equation
formalism can be more specific and informative than its simpler (yet intuitive) graphical counterpart
[188, p.106]. Nonetheless, as with graphical models, the interpretation of structural equations as
structural causal models cannot be made without strong and often untestable assumptions. Applying
these strong assumptions to structural or graphical models incites some harsh criticism. Indeed,
Korb & Wallace (1997) caricature research into causal discovery as "a glorious perversion" akin to
the "search for the philosopher’s stone" [134, p.551].

Such criticisms are important to assimilate, and they remind us to be careful when using statisti-
cal/causal models to draw inference about the nature of reality. In particular, even if a graphical
model bears resemblance to our own conception of a phenomenon, it may not be an appropriate or
fair way to represent complex social constructs (e.g., gender or race), representing what Freidman
described as a biased attempt to "quantify the qualitative, make discrete the continuous, or formalize
the nonformal" [59]. For instance, it is not clear what it means to be able to manipulate/intervene
on someone’s race, independently of their other attributes, or indeed at all. In general, we need
a thorough understanding of what a variable is supposed to represent, and whether it actually
represents it at all (both a problem of ontology and epistemology) before we perform meaningful in-
ference. However, a sufficiently clear understanding may be slippery and, in some cases, impossible
to attain.

The prevalence of reports of systemic bias arising from automated decision processes is increasing,
and an awareness for sources of bias is critical in undertaking fair and equitable machine learning
[99, 168, 219, 248]. Just because causal discovery methods define themselves as ‘causal’, does
not mean there are not significant problems with taking the leap from data to reality. Indeed,
blindly interpreting structured models as robustly representing causal quantities can be immensely
problematic. We appreciate Dawid’s [42] reference to Bourdieu who warns of "sliding from the
model of reality to the reality of the model" [23].

In spite of the notable criticisms, causal discovery methods may still be used productively, particu-
larly for exploratory purposes (e.g., in providing candidate causal links for further investigation and
validation) [42]. Furthermore, the combination of observational and interventional/experimental
data may provide us with opportunities to uniquely identify models which, at least under various
assumptions, correspond with some true external cause-effect relationships. More broadly, shifting
from naive associational and purely predictive machine learning models to models informed by
causal structure, may bring concomitant improvements in model robustness and generalizability. So
long as researchers maintain a cautious approach when making the leap from modelling structure
to inferring causality, structure discovery methods can still be used in support of the endeavour to
further human understanding.
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